Decomposition of wetland plants could release pollutants, which may affect the removal efficiency and effluent quality of constructed wetlands. The experimental decomposition test of was carried out for 60 d using nylon bags, and release characteristics of nitrogen and phosphorus during the decomposition process were studied. The results showed that the decomposition rate of was fastest during the first 0-4 d, with a weight loss of 30%, while the degradation rate slowed gradually during the period 4-60 d, with weight loss of 31%. The fitting first-order kinetic decomposition rate constant was 0.0142 d, and the calculated time to degrade 50% of dry matter was 48.8 d. The water pH decreased rapidly from 7.60 to 5.63 during 0-4 d, stabilized during 4-32 d, and finally increased to 7.03 (which was close to the control sample without ). The dissolved oxygen concentration decreased rapidly from 6.30 mg·L to 0.61 mg·L during 0-4 d, and remained in an anaerobic state. The total nitrogen concentration in the water increased rapidly to 12.7 mg·L within 2 h, gradually decreased to 5.80 mg·L during 2 h-32 d, and then finally increased slightly. The phosphorus concentration increased rapidly to 18.4 mg·L at the beginning of the experiment, and then gradually stabilized. The main forms of nitrogen and phosphorus released by were organic nitrogen (accounting for 65.7%-94.7% of total nitrogen) and inorganic phosphorus (accounting for 61%-89% of total phosphorus), respectively. The total nitrogen content of increased from 24.3 mg·g to 60.5 mg·g with increasing degradation time; the total phosphorus decreased initially from 6.09 mg·g to 2.94 mg·g and then remained constant. These trends may have been related to the fixation of nitrogen by attached microorganisms. Therefore, suitable harvesting and management strategies should be adopted for wetland plants to reduce secondary pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201812050 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Total volatile base nitrogen (TVB-N) is an important indicator for evaluating the freshness of aquatic products and holds great significance in assessing food safety. Traditional testing methods for TVB-N content use the Kjeldahl method, which has shortcomings like lengthy processes, cumbersome steps, and sample destruction. This study innovatively couples the hyperspectral imaging (HSI) technique with an odor imaging sensor (OIS) to achieve non-destructive prediction of TVB-N content in the large yellow croaker.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.
Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, 710061, China. Electronic address:
While soil moisture has a significant effect on nitrogen (N) cycling, how it influences the dependence of this important biological process on environmental factors is unknown. Specifically, it is unclear how the relationships of net N mineralization (N) and soil moisture vary with soil properties and climates. In turn, how the relationships of N vs.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China. Electronic address:
Pyrite is considered as an effective and environmentally friendly substrate in constructed wetlands (CW) for wastewater treatment, but its application in recirculation stacking hybrid constructed wetlands (RSHCW) has been scarcely studied. This study uses varying amounts of pyrite as the substrate in RSHCW, leveraging the recirculation of wastewater to alter microenvironments such as dissolved oxygen (DO) and pH, to explore the potential mechanisms of nitrogen (N) and phosphorus (P) removal in pyrite-based RSHCW. The results show that as the proportion of pyrite increases, the removal rate of total phosphorus (TP) in the effluent also increases (25%→58%), significantly enhancing the deposition of iron-bound phosphorus (Fe-P) on the substrate, thereby turning CW into a P reservoir.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
The supply of nitrogen (N) and the efficiency with which it is used by phytoplankton serve as two fundamental controls on the productivity of many marine ecosystems. Shifts in nitrogen use efficiency (NUE) can decouple primary production from N-supply but how NUE varies across systems is poorly known. Through a global synthesis of how total N (TN) is apportioned among phytoplankton, particulate, dissolved inorganic, and dissolved organic pools, we demonstrate that NUE underlies broad variations in primary production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!