Surface water samples were collected from 20 sampling sites in the main stream and its major tributaries of the Yangtze River from April to May 2017. The concentrations of dissolved trace and major elements were analyzed to determine the spatial variation, source identification, and riverine fluxes using various multivariate statistical techniques, including correlation analysis, principal component analysis (PCA), and cluster analysis (CA) with the goal of determining the influence of natural factors and human activities, including the operation of the Three Gorges Dam on the distribution and loading of major and trace elements in the Yangtze River water environment. Spatial distribution results showed that Cu, Zn, Pb, Cd, and As were the major elements affected by human activities in the Yangtze River, and their concentrations downstream were significantly higher than those in the middle and upper reaches (<0.05). All elements had fairly high concentration values in both channels of the Yangtze River mainstream in Chongqing city and Hanjiang River in Wuhan city, which were mainly related to the enhanced human activities. However, the low concentrations of multi-elements in the reach of the Yangtze River in Yichang were largely caused by the retention effect of Three Gorges Project on element transport, which decreased the riverine loadings of multi-elements. Principal component analysis (PCA) indicated that Na, Mg, K, Ca, Fe, Mn, Co, Ni, Mo, Cr, and V were mainly associated with the weathering and erosion of various rocks and minerals in the river basin. And Cu, Zn, and Pb were mainly affected by enhanced human activities, such as industrial wastewater, metal smelting, and mineral mining, whereas Cd and As were mainly related to agricultural activities. The spatial distribution of trace and major elements showed that concentrations of some elements in the Yangtze River channels were enhanced by human activities. Generally, the heavy metal pollution in the Yangtze River Basin was lower than that in other rivers of the world. However, the annual fluxes of Cu, Zn, Pb, Cd, and As could have far-reaching ecological effects on the Yangtze River estuary and offshore ecological environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201903134 | DOI Listing |
J Med Chem
January 2025
Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China.
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of -methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.
Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.
View Article and Find Full Text PDFAging Clin Exp Res
January 2025
The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China.
Background: Osteopenia (ON) and osteoporosis (OP) are highly prevalent among postmenopausal women and poses a challenge for early diagnosis. Therefore, identifying reliable biomarkers for early prediction using metabolomics is critically important.
Methods: Initially, non-targeted metabolomics was employed to identify differential metabolites in plasma samples from cohort 1, which included healthy controls (HC, n = 23), osteonecrosis (ON, n = 36), and osteoporosis (OP, n = 37).
Drug Deliv Transl Res
January 2025
Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
TXA9, a cardiac glycoside isolated from the root of Streptocaulon juventas (Lour.) Merr., with better therapeutic effect in vitro on non-small cell lung cancer (NSCLC) than cisplatin and has no toxic side effects on the body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!