Arsenic contamination of drinking water sources is a widespread global problem. Of the As species commonly found in groundwater, As(III) is generally more mobile and toxic than As(V). In this work, magnetic nanoparticles (MNp) modified with Fe-Mn binary oxide (MNp-FeMn) were synthesized in order to develop a low cost adsorbent with high removal efficiency for both arsenic species which can be readily separated from water using a magnetic field. MNp-FeMn were characterized using different techniques including SEM/EDS, XRD and BET analysis. Adsorption of As(III) and As(V) on MNp-FeMn was studied as a function of initial arsenic concentration, contact time, pH, and coexisting anions. The BET specific surface area of MNp-FeMn was 109 m/g and maghemite (γ-FeO) was the dominant precipitated phase. The adsorption rate of As(III) and As(V) on MNp-FeMn was controlled by surface diffusion. FTIR analysis confirms that surface complexation through ligand exchange was the main mechanism for As(III) and As(V) removal on MNp-FeMn, with As(III) conversion to As(V) occurring on the adsorbent surface. The maximal adsorption capacity of MNp for As(III) (26 mg/g) was significantly improved after modification with Fe-Mn binary oxide (56 mg/g), while for As(V) was 51 and 54 mg/g, respectively. , and reduced As(III) and As(V) uptake at higher concentrations. MNp-FeMn can be easily regenerated and reused with only a slight reduction in adsorption capacity. The high oxidation and sorption capacity of MNp-FeMn, magnetic properties and reusability, suggest this material is a highly promising adsorbent for treatment of arsenic contaminated groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2019.1705919 | DOI Listing |
J Hazard Mater
January 2025
Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China. Electronic address:
Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress.
View Article and Find Full Text PDFWater Res
January 2025
School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China. Electronic address:
Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnO) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.
View Article and Find Full Text PDFToxics
November 2024
Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China.
Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (HO) concentrations ranging from 5.8 to 96 μmol L in rainwater, which may contribute to the oxidation and removal of As.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China.
Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!