Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-crystalline halide perovskites with regular morphology are of great significance for laser applications because they can be used to fabricate a natural whispering-gallery-mode resonator. Although enormous efforts have been put to synthesize single-crystalline perovskites, controlling the lateral size and thickness of the crystal, particularly at the nanoscale, is still challenging. Here, we report a facile and high-throughput strategy to selectively one-step create micro/nanoscale size-controlled all-inorganic perovskite single-crystal arrays by surface-tension-confined evaporative assembly. Our method can be used to easily tune the single crystal size and selectively position the single crystal, with versatility in fabricating perovskite single-crystal arrays in a wafer scale. When the patterned size increases from 2 to 25 μm, the width of the CsPbClBr perovskite microplates increased from 150 nm to 4.2 μm. Fixing the width of the microplates at 1.6 μm, with the increase of the sliding speed from 50 to 250 mm/min, we could significantly control the thicknesses from 270 to 430 nm. Additionally, our present study provides a characterization of lasers based on different three-dimensional structures, confirming their width-dependent lasing mode and thickness-dependent lasing threshold characteristic, which is beneficial for the tunability of a high-performance microlaser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b18512 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!