Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We developed a novel method of needle trap device packed with titanium-based metal-organic framework for the extraction of phenolic derivatives in air followed by gas chromatography-flame ionization detector analysis. The synthetized adsorbent was packed inside a 22-gauge spinal needle. This method was first tested at laboratory scale, and then was used for field sampling of phenolic derivatives in air. A glass chamber placed on a heater at 60°C was used to provide different concentrations of phenolic derivatives. The desorption conditions and breakthrough volume were optimized using response surface methodology. The limit of detection and limit of quantitation of the proposed method were estimated to be in the range of 0.001-0.12 and 0.003-0.62 ng/mL, respectively, indicating a high sensitivity for the suggested sampler. Storing the packed needle trap device in a refrigerator at 4˚C for 60 days did not dramatically affect the storage stability. Our findings indicated that there was a high correlation coefficient (R = 0.99) between the measurement results of this method and the NIOSH recommended method (XAD-7 sorbent tube). Therefore, it can be concluded that the needle trap device packed with titanium-based metal-organic framework can be used as a efficient method for extraction of phenolic derivatives in air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201900938 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!