Cellular homeostasis in response to glucose availability is maintained through the tight coordination of various physiological processes, including cell proliferation, transcription, and metabolism. In this study, we use the budding yeast Saccharomyces cerevisiae to identify proteins implicated in carbon source-dependent modulation of physiological processes. We find that the mitotic cyclin Clb4 is required for optimal regulation of glucose-starvation-responsive pathways through the target of rapamycin complex 1. Cells lacking Clb4 are characterized by dysregulation of autophagy and impaired modulation of cell size. Notably, cell viability after prolonged glucose starvation is severely reduced by disruption of Clb4. We conclude that Clb4, in addition to its function in the cell cycle, plays a role in the intracellular adaptation to glucose starvation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13722 | DOI Listing |
Biology (Basel)
December 2024
Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil.
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX.
View Article and Find Full Text PDFEndocr J
December 2024
Forefront Research Center, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
J Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!