Background: Although Pasteurella multocida is highly prevalent pathogen in animals and plays an important role in swine respiratory diseases, only a few studies on the use of bacteriophages specific to Pasteurella multocida disease have been reported.

Objective: The object of this study was to investigate the therapeutic effect of specific P. multocida bacteriophages and to identify genes related to bacteriophage signaling utilizing RNA microarrays in swine nasal turbinate cells.

Methods: Pas-MUP-1 phages were applied 24 h prior to P. multocida infection (1 × 10 cfu/ml) at several concentrations of bacterial infection. Cells were incubated to detect cytokines and 24 h to detect mucin production. And real-time quantitative PCR was performed to examine related genes expression. To determine the change of total gene expression based on P. multocida and Pas-MUP-1 treatment, we performed RNA sequencing experiments.

Results: We found that P. multocida-infected PT-K75 cells show increased gene expression of IL-1β, IL-6, and Muc1 in a dose-dependent manner. Interestingly, these genes resulted in decreased expression in P. multocida pretreated with the P. multocida-specific Pas-MUP-1 bacteriophage. RNA sequencing analysis revealed that bacteriophage administration regulated genes associated with immune and inflammatory responses, and the regulated genes were dramatically concentrated in the cytokine/chemokine-based signaling pathways. Pas-MUP-1 treatment was shown to regulate P. multocida induced gene expression in the bacteria.

Conclusion: These results suggest the specific bacteriophage has therapeutic potential as an alternative to antibiotic treatment to defend against P. multocida infection by altering inflammatory gene expression profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13258-019-00898-4DOI Listing

Publication Analysis

Top Keywords

gene expression
16
pasteurella multocida
12
specific bacteriophage
8
genes bacteriophage
8
bacteriophage signaling
8
swine nasal
8
nasal turbinate
8
multocida
8
multocida infection
8
pas-mup-1 treatment
8

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!