High concentration of nitrogen and phosphorus and imbalance of N/P can lead to the formation of water and the malignant proliferation of toxic microalgae. This study put forward the advanced nutrient removal with the regulation of effluent N/P as the core in order to restrain the eutrophication and growth of poisonous algae. According to the preliminary study and review, the optimal N/P for non-toxic green algae was 50:1. The horizontal sub-surface flow constructed wetland was filled with steel slag and ceramsite to achieve the regulation of effluent N/P. The results showed that steel slag had the stable P removal capacity when treating synthetic solution with low P concentration and the average removal rate for 1.5, 1.0, and 0.5 mg/L synthetic P solution was 2.98 ± 0.20 mg kg/h, 2.26 ± 0.15 mg kg/h, and 1.11 ± 0.10 mg kg/h, respectively. Combined with P removal rate and P removal task, the filling amount of steel slag along the SSFCW (sub-surface flow constructed wetland) was 3.22 kg, 4.24 kg, and 4.31 kg. In order to ensure the stability of dephosphorization of steel slag, the regeneration of P removal capacity was investigated by switching operation of two parallel SSFCW in 20 days for cycle. The N removal was limited for the deficiency of carbon source (COD (chemical oxygen demand)/TN = 3-4), and was stable at 18.5-31.9% which was less affected by temperature. Therefore, by controlling the process of quantitative P removal of steel slag, the effluent N/P in SSFCW can be stable at 40-60:1 in the whole year, so as to inhibit the malignant proliferation of toxic algae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06696-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!