Background: Voriconazole, a first-line antifungal drug, exhibits nonlinear pharmacokinetics (PK), together with large interindividual variability but a narrow therapeutic range, and markedly inhibits cytochrome P450 (CYP) 3A4 in vivo. This causes difficulties in selecting appropriate dosing regimens of voriconazole and coadministered CYP3A4 substrates.
Objective: This study aimed to investigate the metabolism of voriconazole in detail to better understand dose- and time-dependent alterations in the PK of the drug, to provide the model basis for safe and effective use according to CYP2C19 genotype, and to assess the potential of voriconazole to cause drug-drug interactions (DDIs) with CYP3A4 substrates in more detail.
Methods: In vitro assays were carried out to explore time-dependent inhibition (TDI) of CYP3A4 by voriconazole. These results were combined with 93 published concentration-time datasets of voriconazole from clinical trials in healthy volunteers to develop a whole-body physiologically based PK (PBPK) model in PK-Sim. The model was evaluated quantitatively with the predicted/observed ratio of the area under the plasma concentration-time curve (AUC), maximum concentration (C), and trough concentrations for multiple dosings (C), the geometric mean fold error, as well as visually with the comparison of predicted with observed concentration-time datasets over the full range of recommended intravenous and oral dosing regimens.
Results: The result of the half maximal inhibitory concentration (IC) shift assay indicated that voriconazole causes TDI of CYP3A4. The PBPK model evaluation demonstrated a good performance of the model, with 71% of predicted/observed aggregate AUC ratios and all aggregate C ratios from 28 evaluation datasets being within a 0.5- to 2-fold range. For those studies reporting CYP2C19 genotype, 89% of aggregate AUC ratios and all aggregate C ratios were inside a 0.5- to 2-fold range of 44 test datasets. The results of model-based simulations showed that the standard oral maintenance dose of voriconazole 200 mg twice daily would be sufficient for CYP2C19 intermediate metabolizers (IMs; *1/*2, *1/*3, *2/*17, and *2/*2/*17) to reach the tentative therapeutic range of > 1-2 mg/L to < 5-6 mg/L for C, while 400 mg twice daily might be more suitable for rapid metabolizers (RMs; *1/*17, *17/*17) and normal metabolizers (NMs; *1/*1). When the model was integrated with independently developed CYP3A4 substrate models (midazolam and alfentanil), the observed AUC change of substrates by voriconazole was inside the 90% confidence interval of the predicted AUC change, indicating that CYP3A4 inhibition was appropriately incorporated into the voriconazole model.
Conclusions: Both the in vitro assay and model-based simulations support TDI of CYP3A4 by voriconazole as a pivotal characteristic of this drug's PK. The PBPK model developed here could support individual dose adjustment of voriconazole according to genetic polymorphisms of CYP2C19, and DDI risk management. The applicability of modeling results for patients remains to be confirmed in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40262-019-00856-z | DOI Listing |
Am J Cancer Res
December 2024
Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China Hefei 230001, Anhui, China.
Objective: To retrospectively analyze the incidence of infections in elderly acute myeloid leukemia (AML) patients undergoing induction therapy with venetoclax combined with hypomethylating agents and to compare these findings with those from patients receiving standard or low-dose chemotherapy.
Methods: Medical records of 169 elderly (≥60 years old) AML patients diagnosed via MICM (morphology, immunology, cytogenetics, and molecular genetics) at the First Affiliated Hospital of USTC between June 2019 and June 2022 were reviewed. Patients were divided into three groups: venetoclax combined with hypomethylating agents group (targeted therapy group), standard chemotherapy group, and low-dose chemotherapy group.
Adv Skin Wound Care
January 2025
At Baylor College of Medicine, Houston, Texas, United States, Livia Frost, BS, is Medical Student, School of Medicine; Ya Xu, MD, PhD, is Assistant Professor, Department of Pathology & Immunology; and Yuriko Fukuta, MD, PhD, CWSP, is Assistant Professor, Department of Medicine, Section of Infectious Diseases.
Diabetic foot bacterial osteomyelitis is a serious infection that can lead to major amputations. However, fungal osteomyelitis in a diabetic foot ulcer is uncommon and has been underrecognized. It typically occurs in patients with underlying immunocompromised status and is associated with poor outcomes.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Central Laboratory, Liaocheng People's Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, Shandong, 252000, China.
Background: Polymicrobial pulmonary infections, common in immunocompromised patients, often manifest more severe symptoms than monomicrobial infections. Clinical diagnosis delays may lead to mortality, emphasizing the importance of fast and accurate diagnosis for these patients. Metagenomic next-generation sequencing (mNGS), as an unbiased method capable of detecting all microbes, is a valuable tool to identify pathogens, particularly in cases where infections are difficult to diagnosis using conventional methods.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera and . Both diagnosis and treatment require speed and effectiveness.
View Article and Find Full Text PDFTher Adv Infect Dis
January 2025
Department of Medical Parasitology, Military Medical University, No. 160 Phunghung Road, Hadong District, Hanoi 100000, Vietnam.
Background: Vulvovaginal candidiasis and urinary tract infections caused by are common diseases. While the most common causative agent is , other species, such as non-, can also be responsible. Susceptibility to antifungal drugs varies among species, but there is very limited information available from Vietnam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!