Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A () and hypoxanthine phosphoribosyl transferase 1 () are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating and expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between and / expression at a transcriptional level, horse gene sequences of and were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909739PMC
http://dx.doi.org/10.3892/etm.2019.8196DOI Listing

Publication Analysis

Top Keywords

cortisol-induced stress
16
skeletal muscle
16
muscle cells
12
stress
9
racehorse skeletal
8
stress exercise
8
horse skeletal
8
western blot
8
blot analysis
8
p53
6

Similar Publications

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme involved in the conversion of cortisone to active cortisol in the liver. Elevated cortisol levels can trigger oxidative stress, inflammation, and hepatocyte damage, highlighting the importance of 11β-HSD1 inhibition as a potential therapeutic approach. This study aimed to explore the effects of INU-101, an inhibitor of 11β-HSD1, on the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis.

View Article and Find Full Text PDF

The oviduct epithelium is the initial maternal contact site for embryos after fertilization, offering the microenvironment before implantation. This early gestation period is particularly sensitive to stress, which can cause reduced fertility and reproductive disorders in mammals. Nevertheless, the local impact of elevated stress hormones on the oviduct epithelium has received limited attention to date, except for a few reports on polyovulatory species like mice and pigs.

View Article and Find Full Text PDF

Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences.

View Article and Find Full Text PDF

Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h.

View Article and Find Full Text PDF

Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout () Skeletal Muscle.

Int J Mol Sci

July 2024

Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile.

The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout () and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!