The potential of uncharred biomaterial derived from dry leaves of Ficusbenjamina (Family: Moraceae,local name: Weeping Fig) plant to remove Cr(VI) from aqueous samples was investigated. In the present work, treatment of dilute acids was used for activating the adsorption centres on the biomass instead of cumbersome charring process. The plant material was characterized using FT-IR, FE-SEM and EDX. Various influencing factors such as pH of equilibrating solution, contact time, Cr (VI) concentrations, adsorbent dose and temperature were optimized to obtain maximum sorption efficacy. The interactions among the biomaterial and Cr (VI) in water were studied by fitting the sorption data in four different adsorption isotherms. The data fitting and experimental evidences indicated formation of monolayer of Cr(VI) over the biomass surface. The process followed pseudo-second order kinetics and was thermodynamically spontaneous under laboratory conditions and reached equilibrium in 24 hours. Maximum adsorption capacity of 56.82 mg/g was obtained at the pH 2 when the concentration before adsorption was 200 mg L of Cr(VI) with 24 hours of equilibration time and 2.50 g L of dose of biomaterial at room temperature. The sorption efficiency was found to be better than many charred bio-based materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920481 | PMC |
http://dx.doi.org/10.1038/s41598-019-55993-z | DOI Listing |
BMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.
View Article and Find Full Text PDFOecologia
January 2025
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA.
Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.
View Article and Find Full Text PDFThe conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, the Netherlands, and co-rapporteur Member State, France, for the pesticide active substance spinosad and the assessment of applications for maximum residue levels (MRLs) are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of spinosad as insecticide on bulb/dry onions, maize (fodder and grain), sweet corn, grapes (table and wine), lettuce, potato, aubergine, pepper and tomato.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Shihezi University, Shihezi, China.
Introduction: In order to elucidate the physiological mechanism of post-flowering assimilate transport regulating the formation of yields in arid regions and to provide technological support for further water-saving and high yields in the wheat region in Xinjiang, we conducted a study on the effects of different fertility periods and different degrees of drought and re-watering on the post-flowering dry matter accumulation and transport of spring wheat and the characteristics of grain filling.
Methods: In two spring wheat growing seasons in 2023 and 2024, a split-zone design was used, with the drought-sensitive variety Xinchun 22 (XC22) and drought-tolerant variety Xinchun 6 (XC6) as the main zones and a fully irrigated control during the reproductive period [CK, 75%~80% field capacity (FC)], with mild drought at the tillering stage (T1, 60%~65% FC), moderate drought at the tillering stage (T2, 45%~50% FC), mild drought at the jointing stage (J1, 60%~65% FC), and mild drought at the jointing stage (J2, 45%~50% FC) as the sub-zones.
Results: The dry matter accumulation of the aboveground parts of wheat (stem sheaths, leaves, and spikes), the transfer rate and contribution rate of nutrient organs, the maximum filling rate (V), and the mean filling rate (V) increased significantly after re-watering in the T1 treatment, and decreased with the deepening of the degree of water stress.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!