Chronic stress compromises cognition, including executive function mediated in the medial prefrontal cortex (mPFC). To investigate mechanisms underlying these processes, we use chronic unpredictable stress (CUS), which reduces activity in the mPFC and impairs cognitive set-shifting, a measure of cognitive flexibility in laboratory rats. It has been shown that CUS attenuates the local electrical field potential response evoked in the mPFC by stimulation of the ascending excitatory afferent from the mediodorsal thalamus (MDT). Thus, in this study, to investigate the role that such changes in afferent-evoked responsivity of the mPFC might play in the cognitive deficits induced by CUS, we used optogenetics to directly induce plastic changes in the thalamic-mPFC afferent pathway. Glutamatergic neurons in the MDT were virally-induced to express the ChETA variant of channelrhodopsin. Then, to first validate the optogenetic induction of plasticity, long-term depression (LTD) or long-term potentiation (LTP) were induced by laser stimulation of ChETA-expressing terminals in the mPFC of anesthetized rats. In subsequent experiments, induction of opto-LTD in awake animals produced set-shifting deficits similar to those induced by CUS. By contrast, inducing opto-LTP in rats that had received prior CUS treatment corrected the stress-induced deficit in set-shifting. These results suggest that stress-induced plasticity in the thalamic-mPFC pathway is sufficient to produce stress-induced cognitive deficits, and may represent a novel target for effective therapeutic intervention to correct cognitive impairment in stress-related psychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946542PMC
http://dx.doi.org/10.1523/ENEURO.0363-19.2019DOI Listing

Publication Analysis

Top Keywords

medial prefrontal
8
prefrontal cortex
8
cognitive set-shifting
8
cognitive deficits
8
deficits induced
8
induced cus
8
cognitive
6
mpfc
5
cus
5
bidirectional optogenetically-induced
4

Similar Publications

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Psychedelics engage the serotonergic system as potent neuromodulators, increasing neuroplasticity in humans and rodents. Persistent changes in cognitive flexibility, emotional regulation, and social cognition are thought to underlie the therapeutic effects of psychedelics. However, the underlying molecular and cellular basis of psychedelic-induced plasticity remains unclear.

View Article and Find Full Text PDF

Background: Intermittent theta burst stimulation (iTBS) is an accepted and approved brain stimulation technique to treat patients with treatment-resistant depression.

Aim: Using neuroimaging, this open-label study aimed to predict the response by observing glucose metabolism with the help of 18-FDG PET scan.

Methods: A total of 25 treatment-resistant depression patients received 15 sessions of iTBS on the left dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Introduction: While functional neuroimaging studies have reported on the neural correlates of severe antisocial behaviors, such as delinquency, little is known about whole brain resting state functional connectivity (FC) of incarcerated adolescents (IA). The aim of the present study is to identify potential differences in resting state connectivity between a group of male IA, compared to community adolescents (CA). The second objective is to investigate the relations among FC and psychological factors associated with delinquent behaviors, namely psychopathic traits (callous unemotional traits, interpersonal problems, and impulsivity), socio-cognitive (empathy and reflective functioning RF) impairments and psychological problems (externalizing, internalizing, attention and thought problems).

View Article and Find Full Text PDF

Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain.

World J Clin Cases

January 2025

Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu 7470066, Yamaguchi, Japan.

Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body. Recently, efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality (VR) technology. VR has been demonstrated to be an effective treatment for pain associated with medical procedures, as well as for chronic pain conditions for which no effective treatment has been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!