Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To determine the cytotoxic and genotoxic potential of the respirable fraction of composite dust (<4 μm) on human bronchial epithelial cells.
Methods: Composite sticks of three commercial dental composites (Filtek Supreme XTE, Grandio, Transbond XT) were ground in an enclosed plexiglass chamber with a rough dental bur (grain-size 100 μm) and the generated airborne respirable dust was collected in a personal cyclone on a teflon filter (pore size 5 μm). Immediately after particle collection, the dust was quantified gravimetrically and the particles were suspended in cell culturing medium. Next, human bronchial epithelial cells (16HBE14o-) were exposed to the suspensions (3 μg/ml-400 μg/ml). After 24 h, cell viability (WST-1 assay) and membrane integrity (LDH assay) were evaluated. Furthermore, the genotoxic effect of a sub-cytotoxic concentration (50 μg/ml) of composite dust was evaluated by the comet assay after 3 h exposure and cell cycle disturbances were analyzed by flow cytometry. Cellular uptake of particles was evaluated by transmission electronic microscope (TEM).
Results: For all three tested composite materials, a decrease in metabolic activity of 10-35% was observed when the cells were exposed to the highest concentrations (100 μg/ml-400 μg/ml). Toxicity was partially linked to membrane disruption especially after 72 h exposure. All tested composites provoked a mild genotoxic effect after short-term exposure compared to the control groups. TEM revealed that respirable particles of all tested composites were taken up by the cells.
Significance: The respirable fraction of composite dust only showed cytotoxic effects at the highest concentrations, whereas mild genotoxicity was observed after exposure to a sub-cytotoxic concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2019.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!