Industrial ammonia production depends heavily on the traditional Haber-Bosch method at the expense of CO emissions and large energy consumptions. Artificial fixation of nitrogen to ammonia is therefore regarded as a promising path to yield ammonia in energy-saving conditions. However, a competent electrocatalyst is highly desired, owing to the extremely stable bond of N≡N. In this work, we report Fe(MoO) nanoparticles as a non-noble-metal electrocatalyst, inspired by nitrogenase enzymes for electrochemically converting nitrogen into ammonia, which achieves a Faradic efficiency of 9.1% and an excellent NH yield of 18.16 μg h mg cat in 0.1 M sodium sulfate at -0.6 V vs reversible hydrogen electrode. Also, it has a better ammonia yield rate of 20.09 μg h mg cat in 0.1 M hydrochloric acid. Moreover, this noble-metal-free catalyst exhibits a unique reaction process selectivity and stability compared with the other catalysts working in harsh conditions. The specific reaction processes are analyzed by density functional theoretical calculations to gain insights into the nitrogen reduction reaction (NRR) by this catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b18027DOI Listing

Publication Analysis

Top Keywords

nitrogen ammonia
8
μg cat
8
ammonia
5
bioinspired electrocatalyst
4
electrocatalyst electrochemical
4
electrochemical reduction
4
reduction ambient
4
ambient conditions
4
conditions industrial
4
industrial ammonia
4

Similar Publications

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Effective Targeting of Glutamine Synthetase with Amino Acid Analogs as a Novel Therapeutic Approach in Breast Cancer.

Int J Mol Sci

December 2024

Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.

Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.

View Article and Find Full Text PDF

Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.

View Article and Find Full Text PDF

Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!