Neural modulation in primate motor cortex exhibits complex patterns. We found that modulation during reaching could be separated into discrete temporal epochs. To determine if these epochs are driven by behavioral events, monkeys performed variations of a center-out reaching task. Monkeys viewed a computer cursor matched to hand position and a radial target at 1 of 16 locations. In some trials, they performed a visuomotor rotation (the cursor moved at an angle to the hand). After adaptation, encoding changes for single units are temporally structured: adaptation could affect one temporal component of a unit's response but not another. In half the normal and perturbed trials, we removed visual feedback before movement. Adaptation-sensitive firing components toward the end of movement are often weak or absent during reaches without feedback. These results show that temporal structure in motor cortical activity is driven by behavior, with a discrete component related to visual feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.11.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!