A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia. | LitMetric

Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia.

Adv Clin Exp Med

Laboratory of Molecular and Genomic Biology, Faculty of Biological Chemical Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico.

Published: December 2019

Background: During cerebral ischemia, energy restoration through the regulation of glucose transporters and antioxidant defense mechanisms is essential to maintain cell viability. Antioxidant therapy has been considered effective to attenuate brain damage; moreover, the regulation of transcription factors that positively regulate the expression of glucose transporters is associated with this therapy. Recently, it has been reported that the use of antioxidants such as S-allylcysteine (SAC), a component of aged garlic extract (AGE), improves survival in experimental models of cerebral ischemia.

Objectives: The aim of this study was to determine the effect of AGE and SAC on the level of mRNA expression of the main neuronal glucose transporter (GLUT3) and the glutamate cysteine ligase catalytic subunit (GCLC) in rats with transient focal cerebral ischemia.

Material And Methods: Cerebral ischemia was induced in male Wistar rats by middle cerebral artery occlusion (MCAO) for 2 h. The animals were sacrificed after different reperfusion times (0-48 h). Animals injected with AGE (360 mg/kg, intraperitoneally (i.p.)) and SAC (300 mg/kg, i.p.) at the beginning of reperfusion were sacrificed after 2 h. The mRNA expression level was analyzed in the fronto-parietal cortex using quantitative polymerase chain reaction (qPCR).

Results: Two major increases in GLUT3 expression at 1 h and 24 h of reperfusion were found. Both treatments increased GLUT3 and GCLC mRNA levels in control and under ischemic/reperfusion injury animals.

Conclusions: This data suggests that SAC and AGE might induce neuroprotection, while controlling reactive oxygen species (ROS) levels, as indicated by the increase in GCLC expression, and regulating the energy content of the cell by increasing glucose transport mediated by GLUT3.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/110328DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia
12
aged garlic
8
garlic extract
8
glut3 gclc
8
gclc expression
8
glucose transporters
8
mrna expression
8
expression
6
cerebral
6
glut3
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!