Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice.

PLoS One

Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.

Published: March 2020

Background: To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells.

Experimental Design: Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice. Cardiac protein synthesis was reduced in tumor-bearing male mice compared to control mice (p = 0.025). Aspect ratio and form factor of cardiac mitochondria from the tumor-bearing mice were increased compared control mice (p = 0.042 and p = 0.0032, respectively) indicating a more fused mitochondrial network in the hearts of tumor-bearing mice. In cultured cardiomyocytes maximal oxygen consumption and mitochondrial reserve capacity were reduced in cells exposed to tumor cell-conditioned medium compared to non-conditioned medium (p = 0.0059, p = 0.0010). Whole transcriptome sequencing of cardiac ventricular muscle from tumor-bearing vs. control mice showed altered expression of 1648 RNA transcripts with a false discovery rate of less than 0.05. Of these, 54 RNA transcripts were reduced ≤ 0.5 fold, and 3 RNA transcripts were increased by ≥1.5-fold in tumor-bearing mouse heart compared to control. Notably, the expression of mRNAs for apelin (Apln), the apelin receptor (Aplnr), the N-myc proto-oncogene, early growth protein (Egr1), and the transcription factor Sox9 were reduced by >50%, whereas the mRNA for growth arrest and DNA-damage-inducible, beta (Gadd45b) is increased >2-fold, in ventricular tissue from tumor-bearing mice compared to control mice.

Conclusions: Lung tumor cells induce heart failure in male mice in association with reduced protein synthesis, mitochondrial function, and the expression of the mRNAs for inotropic and growth factors. These data provide new mechanistic insights into cancer-associated heart failure that may help unlock treatment options for this condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919625PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226440PLOS

Publication Analysis

Top Keywords

tumor-bearing mice
20
protein synthesis
16
control mice
16
compared control
16
mice
13
synthesis mitochondrial
12
mitochondrial function
12
heart failure
12
mice compared
12
rna transcripts
12

Similar Publications

GLUT1 as a generic biomarker enables near-infrared fluorescence molecular imaging guided precise intraoperative tumor detection in breast cancer.

Eur J Nucl Med Mol Imaging

January 2025

CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, China.

Purpose: Precise tumor excision is important but challenging in breast-conserving surgery (BCS). Tumor-specific fluorescence imaging may be used for intraoperative tumor detection and, therefore, to guide precise tumor excision. The aims of this study are to develop a glucose transporter 1 (GLUT1)-targeted near-infrared fluorescence tracer and evaluate its accuracy for breast cancer detection using fresh surgical breast specimens.

View Article and Find Full Text PDF

Bioengineered NanoAid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy.

Nanoscale

January 2025

Department of Anaesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211101, China.

Through transcriptomic analysis of patient-derived glioblastoma tissues, we identify an overactivation of inflammatory pathways that contribute to the development of a tumor-promoting microenvironment and therapeutic resistance. To address this critical mechanism, we present NanoAid, a biomimetic nanoplatform designed to target inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NanoAid employs macrophage-membrane-liposome hybrids to optimize the delivery of COX-2 inhibitor parecoxib and paclitaxel.

View Article and Find Full Text PDF

Hypoxia is a common phenomenon for solid tumors due to a lack of effective vascular system, and has been deemed as an important factor that drives the progression of thyroid cancer (TC) via altering the characteristics of tumor cells. The present study suggested that hypoxic TC cells enhanced cancer stem cell properties and progression of TC by delivering long intergenic non-protein coding RNA 665 (LINC00665)-containing exosomes. Specifically, TPC1 cells were exposed to normoxic or hypoxic environment, and it was found that hypoxic TPC1 cells-secreted exosomes (H-exo) were enriched with LINC00665, compared to normoxic TPC1 cells-derived exosomes (N-exo).

View Article and Find Full Text PDF

An At-labeled alpha-melanocyte stimulating hormone peptide analog for targeted alpha therapy of metastatic melanoma.

Eur J Nucl Med Mol Imaging

January 2025

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.

Purpose: Patients who develop metastatic melanoma have a very poor prognosis, and new treatments are needed to improve the response rates. Melanocortin-1 receptor (MC1R) is a promising target for radionuclide therapy of metastatic melanoma, and alpha-melanocyte stimulating hormone (α-MSH) peptide analogs show high affinities to MC1Rs. Because targeted alpha therapy (TAT) can be a desirable treatment for metastatic melanoma, this study aimed to develop an At-labeled α-MSH peptide analog for TAT of metastatic melanoma.

View Article and Find Full Text PDF

Manganese-52 is gaining interest as an isotope for PET imaging due to its desirable decay and chemical properties for radiopharmaceutical development. Somatostatin receptor 2 (SSTR2) is significantly overexpressed by neuroendocrine tumors (NETs) and is an important target for nuclear imaging and therapy. As an agonist, [Ga]Ga-DOTATATE has demonstrated significant internalization upon interaction with receptor ligands, whereas [Ga]Ga-DOTA-JR11(as an antagonist) exhibits limited internalization but better pharmacokinetics and increased tumor uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!