Oligosaccharins, which are biologically active oligosaccharide fragments of cell wall polysaccharides, may regulate the processes of growth and development as well as the response to stress factors. We characterized the effect of the oligosaccharin that stimulates rhizogenesis (OSRG) on the gene expression profile in the course of IAA-induced formation of adventitious roots in hypocotyl explants of buckwheat ( Moench.). The transcriptomes at two stages of IAA-induced root primordium formation (6 h and 24 h after induction) were compared after either treatment with auxin alone or joint treatment with auxin and OSRG. The set of differentially expressed genes indicated the special importance of oligosaccharin at the early stage of auxin-induced adventitious root formation. The list of genes with altered mRNA abundance in the presence of oligosaccharin included those, which homologs encode proteins directly involved in the response to auxin as well as proteins that contribute to redox regulation, detoxification of various compounds, vesicle trafficking, and cell wall modification. The obtained results contribute to understanding the mechanism of adventitious root formation and demonstrate that OSRG is involved in fine-tuning of ROS and auxin regulatory modes involved in root development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012187PMC
http://dx.doi.org/10.1080/15592324.2019.1703503DOI Listing

Publication Analysis

Top Keywords

adventitious root
12
root formation
12
cell wall
8
treatment auxin
8
root
5
formation
5
stimulation adventitious
4
oligosaccharin
4
formation oligosaccharin
4
osrg
4

Similar Publications

From Taxus to paclitaxel: Opportunities and challenges for urban agriculture to promote human health.

Plant Physiol Biochem

January 2025

Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China. Electronic address:

Conifers of the genus Taxus are environmentally friendly plants with significant medicinal and ecological value, contributing to the enhancement of urban living environments. Paclitaxel, a compound found in Taxus, has garnered particular research interest owing to its potent anti-cancer effects. However, traditional methods of extracting paclitaxel from Taxus are not only inefficient, but also destructive and unsustainable, posing the major risk of Taxus extinction.

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs.

Plants (Basel)

January 2025

Laboratory for Applied In Vitro Plant Biotechnology, Ghent University, 9000 Ghent, Belgium.

Efficient adventitious root formation is essential in micropropagation. Auxin prodrugs, inactive precursors that convert into active auxins within the plant, offer potentially improved rooting control and reduced phytotoxicity. This study investigated the efficacy of dichlorprop ester (DCPE), commercialized as Corasil and Clemensgros (originally intended to increase grapefruit size), in promoting in vitro root initiation in the model plant × , compared to its hydrolyzed form DCP and the related compound C77.

View Article and Find Full Text PDF

Depletion of Gibberellin Signaling Up-Regulates Transcription and Promotes Adventitious Root Formation in Leaf Explants.

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.

Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!