Structure and dynamics of lipid membranes interacting with antivirulence end-phosphorylated polyethylene glycol block copolymers.

Soft Matter

Centre for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA. and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.

Published: January 2020

The structure and dynamics of lipid membranes in the presence of extracellular macromolecules are critical for cell membrane functions and many pharmaceutical applications. The pathogen virulence-suppressing end-phosphorylated polyethylene glycol (PEG) triblock copolymer (Pi-ABAPEG) markedly changes the interactions with lipid vesicle membranes and prevents PEG-induced vesicle phase separation in contrast to the unphosphorylated copolymer (ABAPEG). Pi-ABAPEG weakly absorbs on the surface of lipid vesicle membranes and slightly changes the structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) unilamellar vesicles at 37 °C, as evidenced by small angle neutron scattering. X-ray reflectivity measurements confirm the weak adsorption of Pi-ABAPEG on DMPC monolayer, resulting in a more compact DMPC monolayer structure. Neutron spin-echo results show that the adsorption of Pi-ABAPEG on DMPC vesicle membranes increases the membrane bending modulus κ.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01642bDOI Listing

Publication Analysis

Top Keywords

vesicle membranes
12
structure dynamics
8
dynamics lipid
8
lipid membranes
8
end-phosphorylated polyethylene
8
polyethylene glycol
8
lipid vesicle
8
adsorption pi-abapeg
8
pi-abapeg dmpc
8
dmpc monolayer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!