Purpose: Mesorectal lymph node staging plays an important role in treatment decision making. Here, we explore the benefit of higher-order diffusion MRI models accounting for non-Gaussian diffusion effects to classify mesorectal lymph nodes both 1) ex vivo at ultrahigh field correlated with histology and 2) in vivo in a clinical scanner upon patient staging.
Methods: The preclinical investigation included 54 mesorectal lymph nodes, which were scanned at 16.4 T with an extensive diffusion MRI acquisition. Eight diffusion models were compared in terms of goodness of fit, lymph node classification ability, and histology correlation. In the clinical part of this study, 10 rectal cancer patients were scanned with diffusion MRI at 1.5 T, and 72 lymph nodes were analyzed with Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), Kurtosis, and IVIM-Kurtosis.
Results: Compartment models including restricted and anisotropic diffusion improved the preclinical data fit, as well as the lymph node classification, compared to standard ADC. The comparison with histology revealed only moderate correlations, and the highest values were observed between diffusion anisotropy metrics and cell area fraction. In the clinical study, the diffusivity from IVIM-Kurtosis was the only metric showing significant differences between benign (0.80 ± 0.30 μm /ms) and malignant (1.02 ± 0.41 μm /ms, P = .03) nodes. IVIM-Kurtosis also yielded the largest area under the receiver operating characteristic curve (0.73) and significantly improved the node differentiation when added to the standard visual analysis by experts based on T -weighted imaging.
Conclusion: Higher-order diffusion MRI models perform better than standard ADC and may be of added value for mesorectal lymph node classification in rectal cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.28102 | DOI Listing |
Biomed Phys Eng Express
January 2025
University of Gothenburg, Bruna stråket 13, Goteborg, 405 30, SWEDEN.
Dual-polarity readout is a simple and robust way to mitigate Nyquist ghosting in diffusion-weighted echo-planar imaging but imposes doubled scan time. We here propose how dual-polarity readout can be implemented with little or no increase in scan time by exploiting an observed b-value dependence and signal averaging. The b-value dependence was confirmed in healthy volunteers with distinct ghosting at low b-values but of negligible magnitude at b = 1000 s/mm2.
View Article and Find Full Text PDFPain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115.
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.
Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.
Study Type: This is a cross-sectional study.
Hum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!