Adaptive radiations are characterized by the rapid proliferation of species. Explaining how adaptive radiations occur therefore depends, in part, on identifying how populations become reproductively isolated-and ultimately become different species. Such reproductive isolation could arise when populations adapting to novel niches experience selection to avoid interbreeding and, consequently, evolve mating traits that minimize such hybridization via the process of reinforcement. Here, we highlight that a downstream consequence of reinforcement is divergence of conspecific populations, and this further divergence can instigate species proliferation. Moreover, we evaluate when reinforcement will-and will not-promote species proliferation. Finally, we discuss empirical approaches to test what role, if any, reinforcement plays in species proliferation and, consequently, in adaptive radiation. To date, reinforcement's downstream effects on species proliferation remain largely unknown and speculative. Because the ecological and evolutionary contexts in which adaptive radiations occur are conducive to reinforcement and its downstream consequences, adaptive radiations provide an ideal framework in which to evaluate reinforcement's role in diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esz073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!