Glycolic acid is a two-carbon α-hydroxy acid with many applications in industrial sectors including packaging, fine chemistry, cosmetics, and pharmaceutics. Currently, glycolic acid is chemically manufactured from fossil resources. This chemical mode of production is raising some concerns regarding its use in health for personal care. Microbial production of GA stands as a remarkable challenge to meet these concerns, while responding to the increasing demand to produce bio-sourced products from renewable carbon resources. We here report on the design and expression of a novel non-natural pathway of glycolic acid in . The originality of this new pathway, termed "glycoptimus" relies on two pillars. On the one hand, it requires the overexpression of three naturally occurring genes, namely encoding a D-arabinose-5-P isomerase, encoding a class 1 aldolase that cleaves D-arabinose-5-P into glyceraldehyde-3-P and glycolaldehyde, and coding for an aldehyde dehydrogenase that oxidizes glycoladehyde in glycolate. These three genes constitute the "glycoptimus module." On the other hand, the expression of these genes together with a reshaping of the central carbon metabolism should enable a production of glycolic acid from pentose and hexose at a molar ratio of 2.5 and 3, respectively, which corresponds to 50% increase as compared to the existing pathways. We demonstrated the '' potentiality of this pathway using an strain, which constitutively expressed the glycoptimus module and whose carbon flow in glycolysis was blocked at the level of glyceraldehyde-3-P dehydrogenase reaction step. This engineered strain was cultivated on a permissive medium containing malate and D-glucose. Upon exhaustion of malate, addition of either D-glucose, D-xylose or L-arabinose led to the production of glycolic acid reaching about 30% of the maximum molar yield. Further improvements at the level of enzymes, strains and bioprocess engineering are awaited to increase yield and titer, rendering the microbial production of glycolic acid affordable for a cost-effective industrial process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900487 | PMC |
http://dx.doi.org/10.3389/fbioe.2019.00359 | DOI Listing |
Med Sci Monit
January 2025
Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.
BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).
View Article and Find Full Text PDFInt J Pharm
January 2025
The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:
This study focuses on the preparation and characterization of platelet membrane biomimetic nanocarriers (P-PLGA NPs) and investigates their interactions with the transplacental barrier. Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) were coated with platelet membrane (PLTM) to construct P-PLGA NPs. Additionally, fluorinated polyethylenimine (F-PEI) was grafted onto PLGA NPs to prepare F-PEI-PLGA NPs, which were compared with PLGA NPs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
ACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!