To evaluate the performance of a T2-weighted image (T2WI)-based radiomics signature for differentiating between seminomas and nonseminomas. In this retrospective study, 39 patients with testicular germ-cell tumors (TGCTs) confirmed by radical orchiectomy were enrolled, including 19 cases of seminomas and 20 cases of nonseminomas. All patients underwent 3T magnetic resonance imaging (MRI) before radical orchiectomy. Eight hundred fifty-one radiomics features were extracted from the T2WI of each patient. Intra- and interclass correlation coefficients were used to select the features with excellent stability and repeatability. Then, we used the minimum-redundancy maximum-relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithms for feature selection and radiomics signature development. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of the radiomics signature. Five features were selected to build the radiomics signature. The radiomics signature was significantly different between the seminomas and nonseminomas ( < 0.01). The area under the curve (AUC), sensitivity, and specificity of the radiomics signature for discriminating between seminomas and nonseminomas were 0.979 (95% CI: 0.873-1.000), 90.00 (95% CI: 68.3-98.8), and 100.00 (95% CI: 82.4-100.0), respectively. The T2WI-based radiomics signature has the potential to non-invasively discriminate between seminomas and nonseminomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901122PMC
http://dx.doi.org/10.3389/fonc.2019.01330DOI Listing

Publication Analysis

Top Keywords

radiomics signature
32
seminomas nonseminomas
16
radiomics
9
signature
8
signature discriminating
8
discriminating seminomas
8
t2wi-based radiomics
8
radical orchiectomy
8
seminomas
6
nonseminomas
5

Similar Publications

Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).

Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).

View Article and Find Full Text PDF

Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer.

Acad Radiol

January 2025

Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:

Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).

Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.

View Article and Find Full Text PDF

Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

January 2025

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.

View Article and Find Full Text PDF

Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma.

J Comput Assist Tomogr

November 2024

From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.

Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.

Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.

View Article and Find Full Text PDF

Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).

Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!