https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31850030&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3185003020210110
1664-462X102019Frontiers in plant scienceFront Plant SciGenome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.).15381538153810.3389/fpls.2019.01538Genome-wide association study (GWAS) was conducted to identify loci associated with agronomic (days to flowering, days to maturity, plant height, seed yield and seed weight), seed morphology (shape and dimpling), and seed quality (protein, starch, and fiber concentrations) traits of field pea (Pisum sativum L.). A collection of 135 pea accessions from 23 different breeding programs in Africa (Ethiopia), Asia (India), Australia, Europe (Belarus, Czech Republic, Denmark, France, Lithuania, Netherlands, Russia, Sweden, Ukraine and United Kingdom), and North America (Canada and USA), was used for the GWAS. The accessions were genotyped using genotyping-by-sequencing (GBS). After filtering for a minimum read depth of five, and minor allele frequency of 0.05, 16,877 high quality SNPs were selected to determine marker-trait associations (MTA). The LD decay (LD1/2max,90) across the chromosomes varied from 20 to 80 kb. Population structure analysis grouped the accessions into nine subpopulations. The accessions were evaluated in multi-year, multi-location trials in Olomouc (Czech Republic), Fargo, North Dakota (USA), and Rosthern and Sutherland, Saskatchewan (Canada) from 2013 to 2017. Each trait was phenotyped in at least five location-years. MTAs that were consistent across multiple trials were identified. Chr5LG3_566189651 and Chr5LG3_572899434 for plant height, Chr2LG1_409403647 for lodging resistance, Chr1LG6_57305683 and Chr1LG6_366513463 for grain yield, Chr1LG6_176606388, Chr2LG1_457185, Chr3LG5_234519042 and Chr7LG7_8229439 for seed starch concentration, and Chr3LG5_194530376 for seed protein concentration were identified from different locations and years. This research identified SNP markers associated with important traits in pea that have potential for marker-assisted selection towards rapid cultivar improvement.Copyright © 2019 Gali, Sackville, Tafesse, Lachagari, McPhee, Hybl, Mikić, Smýkal, McGee, Burstin, Domoney, Ellis, Tar'an and Warkentin.GaliKrishna KishoreKKCrop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.SackvilleAlisonACrop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.TafesseEndale GEGCrop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.LachagariV B ReddyVBRAgriGenome Labs Pvt. Ltd, Hyderabad, India.McPheeKevinKDepartment of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.HyblMickMCrop Research Institute/Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Olomouc, Czechia.MikićAlexanderAForage Crops Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia.SmýkalPetrPDepartment of Botany, Palacký University, Olomouc, Czechia.McGeeRebeccaRGrain Legume Genetics and Physiology Research Unit, USDA, ARS, Pullman, WA, United States.BurstinJudithJINRA, UMRLEG, Dijon, France.DomoneyClaireCDepartment of Metabolic Biology, John Innes Centre, Norwich, United Kingdom.EllisT H NoelTHNSchool of Biological Sciences, University of Auckland, Auckland, New Zealand.Tar'anBunyaminBCrop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.WarkentinThomas DTDCrop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.engBB/H009787/1BB_Biotechnology and Biological Sciences Research CouncilUnited KingdomBBS/E/J/000CA392BB_Biotechnology and Biological Sciences Research CouncilUnited KingdomJournal Article20191126
SwitzerlandFront Plant Sci1015682001664-462Xfield peagenetic diversitygenome-wide association studygenotyping-by-sequencingsingle nucleotide polymorphisms
20194172019114201912196020191219602019121961201911epublish31850030PMC688855510.3389/fpls.2019.01538Arganosa G. C., Warkentin T. D., Racz V. J., Blade S., Hsu H., Philips C. (2006). Prediction of crude protein content in field peas grown in Saskatchewan using near infrared reflectance spectroscopy. Can. J. Plant Sci. 86, 157–159. 10.4141/P04-19510.4141/P04-195Burstin J., Gallardo K., Mir R. R., Varshney R. K., Duc G. (2011). “Improving protein content and nutrition quality,” in Biology and breeding of food legumes. Eds. Pratap A., Kumar J. (Wallingford, CT: CAB International; ), 314–328. 10.1079/9781845937669.031410.1079/9781845937669.0314Burstin J., Salloignon P., Chabert-Martinello M., Magnin-Robert J. B., Siol M., Jacquin F., et al. (2015). Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16, 105. 10.1186/s12864-015-1266-110.1186/s12864-015-1266-1PMC435534825765216Cui C., Mei H., Liu Y., Zhang H., Zheng Y. (2017). Genetic diversity, population structure, and linkage disequilibrium of an association-mapping panel revealed by genome-wide SNP markers in sesame. Front. Plant Sci. 8, 1189. 10.3389/fpls.2017.0118910.3389/fpls.2017.01189PMC549855428729877Desgroux A., L'Anthoëne V., Roux-Duparque M., Rivière J. P., Aubert G., Tayeh N., et al. (2016). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17, 124. 10.1186/s12864-016-2429-410.1186/s12864-016-2429-4PMC476118326897486Diapari M., Sindhu A., Warkentin T. D., Bett K. E., Ramsay L., Sharpe A. G., et al. (2015). Population structure and marker-trait association studies of iron, zinc and selenium concentration in seed of field pea (Pisum sativum L.). Mol. Breed. 35, 30. 10.1007/s11032-015-0252-210.1007/s11032-015-0252-2Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A. M., et al. (2015). Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit. Rev. Plant Sci. 34, 381–411. 10.1080/07352689.2014.89846910.1080/07352689.2014.898469Dyer G. A., Lopez-Feldman A., Yunez-Naude A., Taylor J. E. (2014). Genetic erosion in maize's center of origin. PNAS 111, 14094–14099. 10.1073/pnas.140703311110.1073/pnas.1407033111PMC419181325197088Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6, e19379. 10.1371/journal.pone.001937910.1371/journal.pone.0019379PMC308780121573248Ferrari B., Romani M., Aubert G., Boucherot K., Burstin J., Pecetti L., et al. (2016). Association of SNP markers with agronomic and quality traits of field pea in Italy. Czech. J. Genet. Plant Breed. 52, 83–93. 10.17221/22/2016-CJGPB10.17221/22/2016-CJGPBFlint-Garica S. A., Thornsberry J. M., Buckler E. S. (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374. 10.1146/annurev.arplant.54.031902.13490710.1146/annurev.arplant.54.031902.13490714502995Gali K. K., Yong L., Anoop S., Marwan D., Arun S. K., Gene A., et al. (2018). Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol. 18, 172. 10.1186/s12870-018-1368-410.1186/s12870-018-1368-4PMC609743130115030Glaszmann J. C., Kilian B., Upadhyaya H. D., Varshney R. K. (2010). Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 13, 167–173. 10.1016/j.pbi.2010.01.00410.1016/j.pbi.2010.01.00420167531Hamon C., Coyne C. J., McGee R. J., Lesne A. (2013). QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomycces euteiches in four sources of resistance in pea. BMC Plant Biol. 13, 45. 10.1186/1471-2229-13-4510.1186/1471-2229-13-45PMC368005723497245Hao D., Cheng H., Yin Z., Cui S., Zhang D., Wang H., et al. (2012). Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor. Appl. Genet. 124, 447–458. 10.1007/s00122-011-1719-010.1007/s00122-011-1719-021997761Holdsworth W. L., Gazave E., Cheng P., Myers J. R., Gore M. A., Coyne C. J., et al. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture Res. 4, 17017. 10.1038/hortres.2017.1710.1038/hortres.2017.17PMC540534628503311Huang X., Han B. (2014). Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531–551. 10.1146/annurev-arplant-050213-03571510.1146/annurev-arplant-050213-03571524274033Huang S., Gali K. K., Tar'an B., Warkentin T. D., Bueckert R. A. (2017). Pea phenology: crop potential in a warming environment. Crop Sci. 57, 1540–1551. 10.2135/cropsci2016.12.097410.2135/cropsci2016.12.0974Jain S., Kumar A., Mamidi S., McPhee K. (2014). Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol. Biotechnol. 56, 925–938. 10.1007/s12033-014-9772-y10.1007/s12033-014-9772-y24894738Jing R., Vershinin A., Grzebyta J., Shaw P., Smýkal P., Marshall D., et al. (2010). The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 10, 44. 10.1186/1471-2148-10-4410.1186/1471-2148-10-44PMC283468920156342Koenker R. (2017). Quantile regression: 40 years on. Annu. Rev. Econ. 9, 155–176. 10.1146/annurev-economics-063016-10365110.1146/annurev-economics-063016-103651Korte A., Farlow A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29. 10.1186/1746-4811-9-2910.1186/1746-4811-9-29PMC375030523876160Krajewski P., Bocianowski J., Gawlowska M., Kaczmarek Z., Pniewski T., Swiecicki W., et al. (2012). QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183, 323–336. 10.1007/s10681-011-0472-410.1007/s10681-011-0472-4Kreplak J., Madoui M. A., Capal P., Novak P., Labadie K., Aubert G., et al. , et al. (2019). The reference genome of the first model for genetics, Pisum sativum L. Nat. Genet. 51, 1411–1422. 10.1038/s41588-019-0480-110.1038/s41588-019-0480-131477930Kulaeva O. A., Zhernakov A. I., Afonin A. M., Boikov S. S., Sulima A. S., Tikhonovich I. A., et al. (2017). Pea Marker Database (PMD): a new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One 12, e0186713. 10.1371/journal.pone.018671310.1371/journal.pone.0186713PMC565807129073280Kumari P., Basal N., Singh A. K., Rai V. P., Srivastava C. P., Singh P. K. (2013). Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet. Mol. Res. 12, 3540–3550. 10.4238/2013.March.13.1210.4238/2013.March.13.1223546983Levene H. (1960). “Robust tests for equality of variances,” in Contributions to probability and statistics. Ed. Olkin I. (Palo Alto, CA: Stanford Univ. Press; ), 278–292.Lipka A. E., Tian F., Wang Q., Peiffer J., Li M., Bradbury P. J., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399. 10.1093/bioinformatics/bts44410.1093/bioinformatics/bts44422796960Liu N., Xue Y., Guo Z., Li W., Tang J. (2016). Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Front. Plant Sci. 7, 1046. 10.3389/fpls.2016.0104610.3389/fpls.2016.01046PMC496170727512395Ma Y., Coyne C. J., Grusak M. A., Mazourek M., Cheng P., Main D., et al. (2017). Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol. 17, 43. 10.1186/s12870-016-0956-410.1186/s12870-016-0956-4PMC530769728193168Mikić A., Mihailović V., Ćupina B., Kosev V., Warkentin T., McPhee K., et al. (2011). Genetic background and agronomic value of leaf types in pea (Pisum sativum). Field Veg. Crops Res. 48, 275–284. 10.5937/ratpov1102275M10.5937/ratpov1102275MMourad A. M. I., Sallam A., Belamkar V., Wegulo S., Bowden R., Jin Y., et al. (2018). Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci. 9, 380. 10.3389/fpls.2018.0038010.3389/fpls.2018.00380PMC588129129636761Ouafi L., Alane F., Rahal-Bouziane H., Abdelguerfi A. (2016). Agro-morphological diversity within field pea (Pisum sativum L.) genotypes. Afr. J. Agric. Res. 11, 4039–4047. 10.5897/AJAR2016.1145410.5897/AJAR2016.11454Perrier X., Flori A., Bonnot F. (2003). “Data analysis methods,” in Genetic diversity of cultivated tropical plants. Eds. Hamon P., Seguin M., Perrier X., Glaszmann J. C. (Enfield, USA: Science publishers; ), 43–76.Raj A., Stephens M., Pritchard J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197, 573–589. 10.1534/genetics.114.16435010.1534/genetics.114.164350PMC406391624700103Rana J. C., Rana M., Sharma M., Nag A., Chahota R. K., Sharma T. R. (2017). Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol. Bio. Reptr. 35, 118–129. 10.1007/s11105-016-1006-y10.1007/s11105-016-1006-yShapiro S. S., Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. 10.1093/biomet/52.3-4.59110.1093/biomet/52.3-4.591Sindhu A., Ramsay L., Sanderson L.-A., Stonehouse R., Li R., Condie J., et al. (2014). Gene-based SNP discovery and genetic mapping in pea. Theor. Appl. Genet. 127, 2225–2241. 10.1007/s00122-014-2375-y10.1007/s00122-014-2375-yPMC418003225119872Siol M., Jacquin F., Chabert-Martinello M., Smykal P., Le Paslier M. C., Aubert G., et al. (2017). Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3 7, 2461–2471. 10.1534/g3.117.04347110.1534/g3.117.043471PMC555545428611254 Smitchger J. A. (2017). Quantitative trait loci associated with lodging, stem strength, yield, and other important agronomic traits in dry field peas. https://zenodo.org/record/840399#.Wizg-k1hiM8 Accessed 09 Dec 2017.Smýkal P., Hýbl M., Corander J., Jarkovsky J., Flavell A., Griga M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor. Appl. Genet. 117, 413–424. 10.1007/s00122-008-0785-410.1007/s00122-008-0785-418504543Sul J. H., Bilow M., Yang W.-Y., Kostem E., Furlotte N., He D., et al. (2016). Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PloS Genet. 12, e1005849. 10.1371/journal.pgen.100584910.1371/journal.pgen.1005849PMC477880326943367Sun C., Zhang F., Yan X., Zhang X., Dong Z., Cui D., et al. (2017). Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotech. J. 15, 953–969. 10.1111/pbi.1269010.1111/pbi.12690PMC550665828055148Tang Y., Liu X., Wang J., Li M., Wang Q., Tian F., et al. (2016). GAPIT Version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9. 10.3835/plantgenome2015.11.012010.3835/plantgenome2015.11.012027898829Tar'an B., Warkentin T., Somers D. J., Miranda D., Vandenberg A., Blade S., et al. (2003). Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 107, 1482–1491. 10.1007/s00122-003-1379-910.1007/s00122-003-1379-912920512Tar'an B., Warkentin T., Somers D. J., Miranda D., Vandenberg A., Blade S., et al. (2004). Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136, 297–306. 10.1023/B:EUPH.0000032721.03075.a010.1023/B:EUPH.0000032721.03075.a0Tar'an B., Zhang C., Warkentin T., Tullu A., Vandenberg A. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48, 257–272. 10.1139/g04-11410.1139/g04-11415838548Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., Chauveau A., et al. (2015. a). Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 84, 1257–1273. 10.1111/tpj.1307010.1111/tpj.1307026590015Tayeh N., Aubert G., Pilet-Nayel M. L., Lejeune-Henaut I., Warkentin T. D., Burstin J. (2015. b). Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037. 10.3389/fpls.2015.0103710.3389/fpls.2015.01037PMC466158026640470Ubayasena K., Bett K., Tar'an B., Warkentin T. D. (2011). Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54, 261–272. 10.1139/g10-11710.1139/g10-11721491970Warkentin T. D., Smykal P., Coyne C. J., Weeden N., Domoney C., Bing D., et al. (2015). “Pea (Pisum sativum L.),” in Grain Legumes. Ed. De Ron A. M. (New York: Springer; ), 37–83. 10.1007/978-1-4939-2797-5_210.1007/978-1-4939-2797-5_2Weller J. L., Ortega R. (2015). Genetic control of flowering time in legumes. Front. Plant Sci. 6, 207. 10.3389/fpls.2015.0020710.3389/fpls.2015.00207PMC439124125914700Wu X., Li N., Hao J., Hu J., Zhang X., Matthew W. B. (2017). Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Sci. 57, 1574–1584. 10.2135/cropsci2016.04.027110.2135/cropsci2016.04.0271Xu Y., Li P., Yang Z., Xu C. (2017). Genetic mapping of quantitative trait loci in crops. Crop J. 5, 175–184. 10.1016/j.cj.2016.06.00310.1016/j.cj.2016.06.003Yu J., Pressoir G., Briggs W., Vroh B. I., Yamasaki M., Doebley J., et al. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208. 10.1038/ng170210.1038/ng170216380716