Rapid photosynthetic induction is crucial for plants under fluctuating light conditions in a crop canopy as well as in an understory. Most previous studies have focused on photosynthetic induction responses in a single leaf, whereas the systemic responses of the whole plant have not been considered. In a natural environment, however, both single leaves and whole plants are exposed to sunlight, since the light environment is not uniform even within a given plant. In the present study, we examined whether there is any difference between the photosynthetic induction response of a leaf of a whole irradiated plant and an individually irradiated leaf in to consider photosynthetic induction as the response of a whole plant. We used two methods, the visualization of photosynthesis and direct measurements of gas-exchange and Chl fluorescence, to demonstrate that whole irradiated plant promoted its photosynthetic induction improved stomatal opening compared with individually irradiated leaf. Furthermore, using two knockout mutants of abscisic acid transporter, 25 and 40, the present study suggests that abscisic acid could be involved in this systemic response for stomatal opening, allowing plants to optimize the use of light energy at minimal cost in plants in a dynamic light environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892984PMC
http://dx.doi.org/10.3389/fpls.2019.01512DOI Listing

Publication Analysis

Top Keywords

photosynthetic induction
24
irradiated plant
12
individually irradiated
12
stomatal opening
12
improved stomatal
8
light environment
8
induction response
8
irradiated leaf
8
abscisic acid
8
irradiated
6

Similar Publications

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e (VDE), (PsbS), and (ZEP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

Plant A/T-rich sequence- and zinc-binding protein (PLATZ) is a type of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. This family is essential for plant growth, development, and stress response. In this study, 15 were identified in the rice genome with complete PLATZ-conserved domains by CD-search, similar to those found in angiosperms.

View Article and Find Full Text PDF

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!