The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species ( < 0.05), except in the hemicelluloses. Through a principal component analysis, it was found that the amount of extractive-free stem and hot water-soluble extractives were the variables that separated the species, followed by cellulose and hemicelluloses since the seedlings developed mainly parenchyma cells and the conductive tissue showed vessel elements and wide-band tracheids, both with annular and helical thickenings in secondary walls. The type of lignin with the highest percentage was guaiacyl-type, which is accumulated mainly in the vessels, providing rigidity. Whereas in the wide-band tracheids from metaxylem, syringyl lignin accumulated in the secondary walls S2 and S3, which permits an efficient flow of water and gives the plant the ability to endure difficult conditions during seedling development. Only one species can be considered to have paedomorphosis since the conductive elements had a similar chemistry in primary and secondary xylem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892835 | PMC |
http://dx.doi.org/10.3389/fpls.2019.01497 | DOI Listing |
Sci Total Environ
January 2025
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China. Electronic address:
The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Microbial pathogens and other parasites can modify the development of their hosts, either as a target or a side effect of their virulence activities. The plant-pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soilborne microbe that invades host plants through their roots and later proliferates in xylem vessels. In this work, we studied the early stages of R.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia.
This article comments on: . 2024. Differential warming at crown scale impacts walnut primary growth onset and secondary growth rate.
View Article and Find Full Text PDFPestic Biochem Physiol
January 2025
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China. Electronic address:
Biochem Soc Trans
December 2024
Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands.
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!