wilt (FW) is a very serious soil-borne disease worldwide, which usually results in huge yield losses in cucumber production. However, the inheritance and molecular mechanism of the response to FW are still unknown in cucumber ( L.). In this study, two inbred cucumber lines Superina (P) and Rijiecheng (P) were used as the sensitive and resistant lines, respectively. A mixed major gene plus polygene inheritance model was used to analyze the resistance to FW in different generations of cucumber, namely, P, P, F (P×P), B, and B, obtained by backcrossing F plants with Superina (B) or Rijiecheng (B), and F, obtained by self-crossing the F plants. After screening 18 genetic models, we chose the E-1 model, which included two pairs of additive-dominance-epistatic major genes and additive-dominance polygenes, as the optimal model for resistance to FW on the basis of fitness tests. The major effect quantitative trait locus (QTL) was detected in a 1.91-Mb-long region of chromosome 2 by bulked-segregant analysis. We used five insertion/deletion markers to fine-map the to a 0.60 Mb interval from 1,248,093 to 1,817,308 bp on chromosome 2 that contained 80 candidate genes. We also used the transcriptome data of Rijiecheng inoculated with f. sp. (Foc) to screen the candidate genes. Twelve differentially expressed genes were detected in , and five of them were significantly induced by FW. The expression levels of the five genes were higher in FW-resistant Rijiecheng inoculated with Foc than in the control inoculated with water. Our results will contribute to a better understanding of the genetic basis of FW resistance in cucumber, which may help in breeding FW-resistant cucumber lines in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900741 | PMC |
http://dx.doi.org/10.3389/fpls.2019.01425 | DOI Listing |
PLoS One
January 2025
Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China.
Background: Systemic lupus erythematosus (SLE) is a complex and incurable autoimmune disease, so several drug remission for SLE symptoms have been developed and used at present. However, treatment varies by patient and disease activity, and existing medications for SLE were far from satisfactory. Novel drug targets to be found for SLE therapy are still needed.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
January 2025
Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences Indiana University School of Medicine Indianapolis Indiana USA.
Introduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFSci China Life Sci
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
January 2025
Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Limited research has investigated the impact of antihypertensive medications on type 2 diabetes mellitus (T2DM) and whether gut microbiome (GM) mediates this association. Thus, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the potential impact of various antihypertensive drug target genes on T2DM and its complications. Genetic instruments for the expression of antihypertensive drug target genes were identified with expression quantitative trait loci (eQTL) in blood, which should be associated with systolic blood pressure (SBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!