Greater diversity of eukaryotic phytoplankton than expected has been revealed recently through molecular techniques, but little is known about their temporal dynamics or fate in the open ocean. Here, we examined size-fractionated eukaryotic phytoplankton communities from the surface to abyssopelagic zone (5,000 m) throughout the year, by tracking sequence variants of the 18S rRNA gene in the western subtropical North Pacific. The oceanographic conditions were divided into two periods, stratification and mixing, between which the surface phytoplankton community differed. During the mixing period, the abundance of large phytoplankton (≥3 μm) increased, with diatoms and putative dominating this fraction. Picophytoplankton (<3 μm) also increased during the mixing period and were dominated by Mamiellophyceae. Taxa belonging to prasinophytes (including and Mamiellophyceae) were observed in the epipelagic zone throughout the year, and thus likely seeded the seasonal bloom that occurred during the mixing period. In contrast, diatoms observed during the mixing period mostly represented taxa unique to that period, including coastal species. Numerical particle backtracking experiments indicated that water masses in the surface layer could be transported from coastal areas to the study site. Gene sequences of coastal diatoms were present in the abyssopelagic zone. Therefore, allochthonous species drove the seasonal bloom and could be transported to deep waters. In the abyssopelagic zone, the relative abundance of in deep waters was similar to or higher than that of diatoms during the mixing period. Among picophytoplankton, Mamiellophyceae made up a significant fraction in the abyssopelagic zone, suggesting that prasinophytes are also involved in carbon export. Our molecular survey showed that these previously overlooked phytoplankton species could contribute significantly to the seasonal bloom and biological pump in the subtropical open ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902033PMC
http://dx.doi.org/10.3389/fmicb.2019.02722DOI Listing

Publication Analysis

Top Keywords

eukaryotic phytoplankton
12
tracking sequence
8
sequence variants
8
north pacific
8
phytoplankton contributing
4
contributing seasonal
4
seasonal bloom
4
bloom carbon
4
carbon export
4
export revealed
4

Similar Publications

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation.

View Article and Find Full Text PDF

The globally distributed ciliate Balanion planctonicum is a primary consumer of phytoplankton spring blooms. Due to its small size (~20 μm), identification and quantification by molecular tools is preferable as an alternative to the laborious counting of specimen in quantitative protargol stains. However, previous sequencing of the 18S rDNA V9 region of B.

View Article and Find Full Text PDF

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!