Development and Validation of the Yonsei Face Database (YFace DB).

Front Psychol

Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.

Published: December 2019

The purposes of this study were to develop the Yonsei Face Database (YFace DB), consisting of both static and dynamic face stimuli for six basic emotions (happiness, sadness, anger, surprise, fear, and disgust), and to test its validity. The database includes selected pictures (static stimuli) and film clips (dynamic stimuli) of 74 models (50% female) aged between 19 and 40. Thousand four hundred and eighty selected pictures and film clips were assessed for the accuracy, intensity, and naturalness during the validation procedure by 221 undergraduate students. The overall accuracy of the pictures was 76%. Film clips had a higher accuracy, of 83%; the highest accuracy was observed in happiness and the lowest in fear across all conditions (static with mouth open or closed, or dynamic). The accuracy was higher in film clips across all emotions but happiness and disgust, while the naturalness was higher in the pictures than in film clips except for sadness and anger. The intensity varied the most across conditions and emotions. Significant gender effects were found in perception accuracy for both the gender of models and raters. Male raters perceived surprise more accurately in static stimuli with mouth open and in dynamic stimuli while female raters perceived fear more accurately in all conditions. Moreover, sadness and anger expressed in static stimuli with mouth open and fear expressed in dynamic stimuli were perceived more accurately when models were male. Disgust expressed in static stimuli with mouth open and dynamic stimuli, and fear expressed in static stimuli with mouth closed were perceived more accurately when models were female. The YFace DB is the largest Asian face database by far and the first to include both static and dynamic facial expression stimuli, and the current study can provide researchers with a wealth of information about the validity of each stimulus through the validation procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901828PMC
http://dx.doi.org/10.3389/fpsyg.2019.02626DOI Listing

Publication Analysis

Top Keywords

static stimuli
20
film clips
20
dynamic stimuli
16
mouth open
16
stimuli mouth
16
face database
12
sadness anger
12
expressed static
12
stimuli
11
yonsei face
8

Similar Publications

Among the factors, such as emotions, that distort time perception, vestibular stimulation causes a contraction in subjective time. Unlike emotions, the intensity of vestibular stimulation can be easily and precisely modified, making it possible to study the quantitative relationship between stimulation and its effect on time perception. We hypothesized that the contraction of subjective time would increase with the vestibular stimulation magnitude.

View Article and Find Full Text PDF

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the impact of auditory input on postural control in young adult cochlear implant users with profound sensorineural hearing loss. The research explores the relationship between auditory cues and static postural stability in individuals with hearing impairment.

Methods: 34 young adult cochlear implant users, consisting of 15 males and 19 females aged 18-35 years, underwent various balance tests, including the modified Clinical Tests of Sensory Interaction on Balance (mCTSIB) and the Unilateral Stance Test (UST), under different auditory conditions: (1) White noise stimulus present with the sound processor activated, (2) Ambient noise present with the sound processor activated, and (3) Sound processor deactivated.

View Article and Find Full Text PDF

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!