BK Ca-activated K channels are important regulators of membrane excitability. Multiple regulatory mechanisms tailor BK current properties across tissues, such as alternative splicing, posttranslational modifications, and auxiliary subunits. Another potential mechanism for modulating BK channel activity is genetic variation due to single nucleotide polymorphisms (SNPs). The gene encoding the human BK α subunit, , contains hundreds of SNPs. However, the variation in BK channel activity due to SNPs is not well studied. Here, we screened the effects of four SNPs (A138V, C495G, N599D, and R800W) on BK currents in HEK293T cells, selected based on predicted protein pathogenicity or disease linkage. We found that the SNPs C495G and R800W had the largest effects on BK currents, affecting the conductance-voltage relationship across multiple Ca conditions in the context of two BK channel splice variants. In symmetrical K, C495G shifted the V to more hyperpolarized potentials (by -15 to -20 mV) and accelerated activation, indicating C495G confers some gain-of-function properties. R800W shifted the V to more depolarized potentials (+15 to +35 mV) and slowed activation, conferring loss-of-function properties. Moreover, the C495G and R800W effects on current properties were found to persist with posttranslational modifications. In contrast, A138V and N599D had smaller and more variable effects on current properties. Neither application of alkaline phosphatase to patches, which results in increased BK channel activity attributed to channel dephosphorylation, nor bidirectional redox modulations completely abrogated SNP effects on BK currents. Lastly, in physiological K, C495G increased the amplitude of action potential (AP)-evoked BK currents, while R800W had a more limited effect. However, the introduction of R800W in parallel with the epilepsy-linked mutation D434G (D434G/R800W) decreased the amplitude of AP-evoked BK currents compared with D434G alone. These results suggest that in a physiological context, C495G could increase BK activation, while the effects of the loss-of-function SNP R800W could oppose the gain-of-function effects of an epilepsy-linked mutation. Together, these results implicate naturally occurring human genetic variation as a potential modifier of BK channel activity across a variety of conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901604PMC
http://dx.doi.org/10.3389/fnmol.2019.00285DOI Listing

Publication Analysis

Top Keywords

current properties
16
channel activity
16
effects
8
single nucleotide
8
nucleotide polymorphisms
8
posttranslational modifications
8
genetic variation
8
c495g r800w
8
effects currents
8
effects current
8

Similar Publications

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

In Situ Self-Assembled Naringin/ZIF-8 Nanoparticle-Embedded Bacterial Cellulose Sponges for Infected Diabetic Wound Healing.

ACS Appl Mater Interfaces

January 2025

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!