Neural Field Theory of Corticothalamic Attention With Control System Analysis.

Front Neurosci

School of Physics, University of Sydney, Sydney, NSW, Australia.

Published: November 2019

Neural field theory is used to analyze attention by extending an existing model of the large-scale activity in the corticothalamic system to incorporate local feedbacks that modulate the gains of neural connectivity as part of the response to incoming stimuli. Treatment of both activity changes and connectivity changes as part of a generalized response enables generalized linear transfer functions of the combined response to be derived. These are then analyzed and interpreted via control theory in terms of stimulus-driven changes in system resonances that were recently shown to implement data filtering and prediction of the inputs. Using simple visual stimuli as a test case, it is shown that the gain response can implement attention by evaluating two main features of the stimuli: the magnitude and the rate of change, by increasing the weight placed on the rate of change in response to sudden changes, while reducing the contribution of stimuli value in tandem. These changes of filter parameters are shown to improve the prediction of the upcoming stimuli based on its recent time course. This outcome is analogous to controller-parameter tuning for performance enhancement in engineering control theory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892952PMC
http://dx.doi.org/10.3389/fnins.2019.01240DOI Listing

Publication Analysis

Top Keywords

neural field
8
field theory
8
control theory
8
rate change
8
response
5
stimuli
5
changes
5
theory
4
theory corticothalamic
4
corticothalamic attention
4

Similar Publications

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.

Annu Rev Neurosci

January 2025

1Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; email:

Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of Next Generation Sequencing (NGS) technology has transformed clinical diagnostics, providing extensive microbiome data for personalized medicine.
  • Despite its potential, microbiome data's complexity and variability pose challenges for traditional statistical and machine learning approaches, including deep learning.
  • The paper presents a novel feature engineering technique that combines two data feature sets, significantly improving the Deep Neural Network's performance in colorectal cancer detection, raising the Area Under the Curve (AUC) from 0.800 to 0.923, thus enhancing microbiome data analysis and disease detection capabilities.
View Article and Find Full Text PDF

The role of oscillations in grid cells' toroidal topology.

PLoS Comput Biol

January 2025

Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!