Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Rosacea is one of the most common cutaneous disorder characterized primarily by facial flushing, erythema, papules, pustules, telangiectases, and nasal swelling. Diagnosis of rosacea is principally done by a physical examination and a consistent patient history. However, qualitative human assessment is often subjective and suffers from a relatively high intra- and inter-observer variability in evaluating patient outcomes.
Materials And Methods: To overcome these problems, we propose a quantitative and reproducible computer-aided diagnosis system, Ros-NET, which integrates information from different image scales and resolutions in order to identify rosacea lesions. This involves adaption of Inception-ResNet-v2 and ResNet-101 to extract rosacea features from facial images. Additionally, we propose to refine the detection results by means of facial-landmarks-based zones (ie, anthropometric landmarks) as regions of interest (ROI), which focus on typical areas of rosacea occurrence on a face.
Results: Using a leave-one-patient-out cross-validation scheme, the weighted average Dice coefficients, in percentages, across all patients (N = 41) with 256 × 256 image patches are 89.8 ± 2.6% and 87.8 ± 2.4% with Inception-ResNet-v2 and ResNet-101, respectively.
Conclusion: The findings from this study support that pre-trained networks trained via transfer learning can be beneficial in identifying rosacea lesions. Our future work will involve expanding the work to a larger database of cases with varying degrees of disease characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/srt.12817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!