Comparison of fuel characteristics of hydrotreated waste cooking oil with its biodiesel and fossil diesel.

Environ Sci Pollut Res Int

Center for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Bawana Road, Rohini, Delhi, 110042, India.

Published: March 2021

Compression ignition engines powered by diesel are the work horses of developing countries like India. However, burning fossil fuel causes a lot of air pollution and the depletion of fuel at an alarming rate. Fuels produced from biomass or wastes can partially substitute fossil diesel to decrease its consumption. One such feedstock is waste cooking oil (WCO) which can be easily converted into fuel for diesel engines. The hydrotreating process stands out among the methods available for converting WCO into fuel, since its properties are almost similar to fossil diesel with little or no oxygen content. In this study, the physico-chemical properties of the hydrotreated waste cooking oil (HVO), biodiesel of waste cooking oil, diesel and blends of HVO and diesel are compared. The blends were prepared by mixing 10%, 20%, 30%, 40% and 50% of HVO on volume basis in diesel. The evaporation rate and ignition probability of the fuel samples were found by using a hot-plate test setup. HVO had higher ignition probability than all the test sample. As the percentage of HVO increased in the test samples, the ignition probability increased. The Sauter mean diameter (SMD) of the samples was also found using Malvern Spraytec. The SMD of HVO was larger than diesel but smaller than biodiesel. The study shows that blends of HVO up to 30% are feasible for present use in diesel engines, as the viscosity (2.54, 2.59 and 2.62cSt) and calorific value (42.41, 42.29, 42.08 MJ/kg) of the three blends (10%, 20% and 30%) is close to diesel (2.51cSt and 42.58 MJ/kg). Also, due to high cetane index, neat HVO or blends having higher HVO content (> 30%) cannot be used in the existing engines as the engine power output may be affected. Therefore, to use these fuels, the engine needs to be modified which is not feasible for existing engines. The FTIR and GC-MS analysis shows that the HVO has low oxygen content and high amount of paraffins, whereas biodiesel of waste cooking oil has high unsaturation and high oxygen content.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-07110-wDOI Listing

Publication Analysis

Top Keywords

waste cooking
20
cooking oil
20
fossil diesel
12
oxygen content
12
ignition probability
12
diesel
11
hvo
10
hydrotreated waste
8
diesel engines
8
biodiesel waste
8

Similar Publications

This study analyzed the nutritional composition, physicochemical properties, and volatile profiles of three major bovine head muscles-medial pterygoid, masseter, and buccinator-to reduce byproduct resource waste and increase the utilization rate of bovine head to establish a foundation for its industrial use. Compared to tenderloin, which is popular among consumers, these head muscles were found to be rich in collagen (4.90-13.

View Article and Find Full Text PDF

As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes.

View Article and Find Full Text PDF

Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure.

Chemosphere

January 2025

Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China. Electronic address:

Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Entrapment of Lipase from Candida antarctica in a Xerogel for the Production of Biodiesel from Waste Cooking Oil.

Chembiochem

December 2024

UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59000, Lille, France.

The process to synthesize biodiesel is well-developed and optimized to overcome the disadvantages like the competition with agriculture using feedstock, and the problematics in the process. Oils from waste and enzymatic catalysis have proven to be good solutions to these problems. Lipases are currently the most commonly used enzymes in the transesterification of oils; nevertheless, enzymes have a high cost and must be immobilized to offer repetitive reuse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!