Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pentatricopeptide repeat (PPR) proteins are one of the largest protein families in land plants. PPR proteins exhibit sequence-specific RNA-binding activity and are implicated in plant growth and development related processes. In this study, we report that the radicleless 1 (rl1) mutant in rice (Oryza sativa L.) exhibited defective radicle emergence in embryos and compromised grain filling in endosperms. Gene cloning and confirmation via genetic complementation analyses showed that RL1 encodes a P-type PPR protein, which is localized to mitochondria. The RL1 protein was specifically involved in the splicing of intron 1 of the mitochondrial nad4 transcript, which encodes a subunit of the mitochondrial NADH dehydrogenase complex. Consistent with this observation, the rl1 mutant exhibited altered mitochondrial morphology and lower ATP accumulation compared with the wild type. Thus, our findings suggest that RL1-mediated nad4 splicing is crucial for embryo and endosperm development in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.11.084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!