The objective of this study was to investigate the effect of the high welding speed on the mechanical properties and their relations to microstructural characteristics of butt friction stir welded joints with the use of 6082-T6 aluminum alloy. The aluminum sheets of 2.0 mm thick were friction stir welded at low (conventional FSW) and high welding speeds (HSFSW) of 200 and 2500 mm/min, respectively. The grain size in the nugget zone (NZ) was decreased; the width of the softened region was narrowed down as well as the lowest microhardness value located in the heat-affected zone (HAZ) was enhanced by HSFSW. The increasing welding speed resulted in the higher ultimate tensile strength and lower elongation, but it had a slight influence on the yield strength. The differences in mechanical properties were explained by analysis of microstructural changes and tensile fracture surfaces of the welded joints, supported by the results of the numerical simulation of the temperature distribution and material flow. The fracture of the conventional FSW joint occurred in the HAZ, the weakest weld region, while all HSFSW joints raptured in the NZ. This demonstrated that both structural characteristics and microhardness distribution influenced the actual fracture locations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947154 | PMC |
http://dx.doi.org/10.3390/ma12244211 | DOI Listing |
Heliyon
December 2024
Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
Aluminium-lithium (Al-Li) 2060 alloy, a 3rd generation Al-Li alloy, is considered a structural material for aircraft components. This study employs the Friction Stir Welding (FSW) process with a kinematic 5-axis robotic arm to weld 4-mm-thick plates of 2060-T8E30 Al-Li alloy. The focus is on the impact of tool axial force and speeds on the microstructural evolution, mechanical properties, and surface integrity of the welded joints.
View Article and Find Full Text PDFSci Rep
January 2025
Beijing Solidwel Intelligent Technology Co., Ltd., BeiJing, 100000, China.
Based on the Johnson-Cook constitutive model and modified Coulomb's law, the study investigates the impact of various process parameters on the weld temperature field in high-strength 5052 aluminum alloy friction stir welding (FSW) for aerospace applications. Utilizing a thermo-mechanical model, the significance of rotational speed, welding speed, and indentation on the peak weld temperature is examined through Taguchi's orthogonal experimental design. S/N ratio and ANOVA results show that the rotational speed has the most significant effect on the peak temperature of the weld, followed by the amount of indentation, and the welding speed has the smallest effect, the optimal combination of welding process parameters is determined as follows:the rotational speed is 1000 rpm, the amount of indentation is 0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Reliability and Systems Engineering, Beihang University, Beijing, China.
Friction stir processing (FSP) is successfully employed to alleviate their hook defects of friction stir lap welding (FSLW) of aluminum alloys. The mechanical properties and microstructural characteristics are compared and analyzed between the FSLW&FSP joint fabricated by FSLW and FSP and the FSLW joint. The microstructural analysis shows that the hook defect zone at the advancing side of the FSLW joint is changed into the overlap zone (OZ) of the FSLW&FSP joint due to microstructure reconstruction caused by performing the FSP.
View Article and Find Full Text PDFData Brief
December 2024
Centro Universitário FEI, Avenida Humber de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 São Paulo, Brazil.
The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!