In this work, we applied the spectral element method (SEM) to analyze the dynamic characteristics of fluid conveying single-walled carbon nanotubes (SWCNTs). First, the dynamic equations for fluid conveying SWCNTs were deduced based on the nonlocal Timoshenko beam theory. Then, the spectral element formulation was established for a free/forced vibration analysis of fluid conveying SWCNTs by introducing discrete Fourier transform. Furthermore, the proposed method was validated using several comparison examples. Finally, the natural frequencies and dynamic responses of a simply-supported fluid conveying SWCNTs were calculated by the SEM, considering different internal fluid velocities and small-scale parameters (SSPs). The effects of fluid velocity and SSPs on the dynamic characteristics of SWCNTs conveying fluid were revealed by the numerical results. Compared with other methods, the SEM shows high accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956308 | PMC |
http://dx.doi.org/10.3390/nano9121780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!