A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar. | LitMetric

Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar.

Sensors (Basel)

Intelligence, Surveillance and Space Division, Defence Science and Technology Group, Edinburgh 5111, SA, Australia.

Published: December 2019

This paper introduces a new approach to bistatic radar tomographic imaging based on the concept of compressive sensing and sparse reconstruction. The field of compressive sensing has established a mathematical framework which guarantees sparse solutions for under-determined linear inverse problems. In this paper, we present a new formulation for the bistatic radar tomography problem based on sparse inversion, moving away from the conventional -space tomography approach. The proposed sparse inversion approach allows high-quality images of the target to be obtained from limited narrowband radar data. In particular, we exploit the use of the parameter-refined orthogonal matching pursuit (PROMP) algorithm to obtain a sparse solution for the sparse-based tomography formulation. A key important feature of the PROMP algorithm is that it is capable of tackling the dictionary mismatch problem arising from off-grid scatterers by perturbing the dictionary atoms and allowing them to go off the grid. Performance evaluation studies involving both simulated and real data are presented to demonstrate the performance advantage of the proposed sparsity-based tomography method over the conventional -space tomography method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960522PMC
http://dx.doi.org/10.3390/s19245515DOI Listing

Publication Analysis

Top Keywords

compressive sensing
12
bistatic radar
12
tomographic imaging
8
sparse inversion
8
conventional -space
8
-space tomography
8
promp algorithm
8
tomography method
8
sparse
5
tomography
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!