Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanocellulose, being a material with nanodimensions, is characterized by high tensile strength, high modulus of elasticity, low thermal expansion, and relatively low density, as well as exhibiting very good electrical conductivity properties. The paper presents the results of research on cement mortars with the addition of nanocrystals cellulose, applied in three different amounts (0.5%, 1.0%, and 1.5%) by weight of cement, including: physical and mechanical properties, frost resistance and resistance against the detrimental effect of salt, and microstructure examination (SEM). Along with an increase in amount of admixture, the weight loss following frost resistance and salt crystallization tests is reduced. Studies have shown that the addition of nanocrystalline cellulose improves the compressive and flexural strength by 27.6% and 10.9%, respectively. After 50 freezing and thawing (F-T) cycles for the mortars with 1.5% nanocellulose admixture, an improvement in frost resistance by 98% was observed. In turn, the sulfate crystallization tests indicated a 35-fold decrease in weight loss following 1.5% nanopolymer addition to the mortar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960752 | PMC |
http://dx.doi.org/10.3390/polym11122088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!