In the era of antimicrobial resistance, the identification of new antimicrobials is a research priority at the global level. In this regard, the attention towards functional antimicrobial polymers, with biomedical/pharmaceutical grade, and exerting anti-infective properties has recently grown. The aim of this study was to evaluate the antibacterial, antibiofilm, and antiadhesive properties of a number of quaternized chitosan derivatives that have displayed significant muco-adhesive properties and wound healing promotion features in previous studies. Low (QAL) and high (QAH) molecular weight quaternized chitosan derivatives were synthetized and further modified with thiol moieties or pendant cyclodextrin, and their antibacterial activity evaluated as minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The ability of the derivatives to prevent biofilm formation was assessed by crystal violet staining. Both QAL and QAH derivatives exerted a bactericidal and/or inhibitory activity on the growth of and . The same compounds also showed marked dose-dependent anti-biofilm activity. Furthermore, the high molecular weight derivative (QAH) was used to functionalize titanium plates. The successful functionalization, demonstrated by electron microscopy, was able to partially inhibit the adhesion of at 6 h of incubation. The shown ability of the chitosan derivatives tested to both inhibit bacterial growth and/or biofilm formation of clinically relevant bacterial species reveals their potential as multifunctional molecules against bacterial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940869 | PMC |
http://dx.doi.org/10.3390/ijms20246297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!