Background: Bone augmentation is a challenging problem in the field of maxillofacial surgery.

Objective: In this study, we prepared and evaluated muscle extracellular matrix (MEM) after adding silica calcium phosphate composite (SCPC) seeded with human bone marrow mesenchymal cells (hBMSCs). We then investigated bone augmentation in vivo using the prepared MEM-SCPC.

Materials And Methods: hBMSCs were seeded on MEM-SCPC, and MEM was characterized. Calvarial bone grafts were prepared using nude mice (n = 12) and grafted separately in two experimental groups: grafts with MEM (control, n = 4) and grafts with MEM-SCPC-hBMSCs (experimental group, n = 8) for 8 weeks. Micro-computed tomography (micro-CT) and histological analysis were then performed.

Results: Micro-CT analysis demonstrated a thinner trabeculae in grafted defects than normal native bone, with a high degree of anisotropy. Quantitative histomorphometric assessment showed a higher median bone percentage surface area of 80.2% ± 6.0% in the experimental group.

Conclusion: The enhanced bone formation and maturation of bone grafted with MEM-SCPC-hBMSCs suggested the potential use of this material for bone augmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ab6300DOI Listing

Publication Analysis

Top Keywords

bone augmentation
16
bone
10
muscle extracellular
8
extracellular matrix
8
matrix mem
8
mem
4
mem scpc
4
scpc bioceramic
4
bioceramic bone
4
augmentation
4

Similar Publications

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Objectives: This preclinical ex vivo porcine study aimed to evaluate the effects of two flap advancement techniques and periosteal suturing (PS) on graft material displacement during primary wound closure in guided bone regeneration (GBR). Secondary objectives included assessing flap advancement and the impact of soft tissue characteristics on graft displacement.

Materials And Methods: Standardized two-walled horizontal bone defects were created in second premolar sites of pig hemimandibles.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

This study aims to evaluate and compare the usability and performance of mixed reality (MR) technology versus conventional methods for preoperative planning of patient-specific reconstruction plates for orbital fractures. A crossover study design was used to compare MR technology with conventional three-dimensional (3D) printing approaches in the planning of maxillofacial traumatology treatments. The primary focus was on user-friendliness and the accuracy of patient-specific reconstruction planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!