Removal of As (V) from the aqueous solution by a modified granular ferric hydroxide adsorbent.

Sci Total Environ

Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, Hanoi, Viet Nam.

Published: March 2020

A novel adsorbent was prepared in granular form from iron (III) hydroxide and other additives to remove arsenate (As (V)) from aqueous solution. Adsorption of As (V) onto the adsorbent in batch experiments was analyzed to understand the adsorption mechanism, affecting factors, and adsorption isotherms. The optimal working conditions for the developed adsorbent were at pH 3, 30 °C and 50 g/L. The adsorption of arsenate onto the adsorbent occurred rapidly in the first 10 min and reached equilibrium in 2 h. The Langmuir isotherm was found to be best fitted the adsorption. The pre- and post-adsorption adsorbents were characterized by SEM, BET, FTIR, XRD, and Zeta potential techniques. Experimental results clearly demonstrated the potential impact of elemental composition, crystallinity, surface morphology, and other physico-chemical properties of the adsorbent on the adsorption performance variety. The experimental results with the pilot scale treatment system revealed that the adsorbent can be applied successfully and lead to a very efficient drinking water treatment system, at a competitive cost compared to the water market in Hanoi, Vietnam.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135947DOI Listing

Publication Analysis

Top Keywords

aqueous solution
8
treatment system
8
adsorbent
7
adsorption
6
removal aqueous
4
solution modified
4
modified granular
4
granular ferric
4
ferric hydroxide
4
hydroxide adsorbent
4

Similar Publications

Mitigating anthropogenic climate change with aqueous green energy.

Sci Rep

January 2025

School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.

Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.

View Article and Find Full Text PDF

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Norfloxacin was ozonized in aqueous montmorillonite suspensions and the resulting toxicity on Lemna minor was investigated for understanding the impact of natural partial oxidation of antibiotics on clay-containing ecosystems. Ion-exchanged montmorillonites (Mt) were used as catalysts because of their large occurrence in soils and aquatic media, while Lemna minor, an aquatic macrophyte is regarded as a bioindicator highly responsive to ecotoxicity change in the environment. NOF solutions exhibit intrinsic toxicity on L.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures.

J Colloid Interface Sci

January 2025

Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:

Hypothesis: Water-in-water (W/W) emulsions can be obtained when two water-soluble components are mutually immiscible. The scientific literature on W/W emulsions focuses on polymer-polymer mixtures, with only a few reports on polymer-salt systems, and no documented cases involving polymer-surfactant mixtures. Our hypothesis was that by lowering the cloud temperature of a surfactant through the addition of a polymer, phase segregation into two immiscible aqueous solutions could enable the formation of W/W emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!