Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2019.103618DOI Listing

Publication Analysis

Top Keywords

floral defense
16
nicotiana spp
16
proteins
15
floral nectars
8
involved floral
8
microbial growth
8
comparative proteomic
8
proteomic analysis
8
group proteins
8
nectar redox
8

Similar Publications

The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown.

View Article and Find Full Text PDF

Background: is a globally distributed and extensive genus, comprising over 1000 species. In the southwestern mountains of China, there exists a remarkable diversity of , with Yunnan Province alone harboring more than 600 species. Franch.

View Article and Find Full Text PDF

Genomic insights into adaptive evolution of the species-rich cosmopolitan plant genus Rhododendron.

Cell Rep

October 2024

State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The species-rich cosmopolitan genus Rhododendron offers a good system for exploring the genomic mechanisms underlying adaptation to diverse habitats. Here, we report high-quality chromosomal-level genome assemblies of nine species, representing all five subgenera, different altitudinal distributions, and all flower color types of this genus. Further comprehensive genomic analyses indicate diverse adaptive strategies employed by Rhododendron, particularly adaptation to alpine and subalpine habitats by expansion/contraction of gene families involved in pathogen defense and oxidative phosphorylation, genomic convergent evolution, and gene copy-number variation.

View Article and Find Full Text PDF

Background: Rivea ornata, a rare species from the morning glory family, exhibits uncommon characteristics compared to other typical morning glories, including nocturnal flowers that fit the classic moth pollination syndrome. However, the accuracy of its predicted pollination syndrome and its mating system have never been assessed. Additionally, R.

View Article and Find Full Text PDF

Three morning glory species in the genus Lour., (Choisy) Traiperm & Rattanakrajang, Gagnep & Courchet, and (Kerr) Staples & Traiperm, were found co-occurring and co-flowering. and are rare, while is near threatened and distributed throughout Myanmar and Thailand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!