Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities.

Int J Biol Macromol

Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), Soukra Road, km 3.5, B.P. 1173, 3038 Sfax, Tunisia; Common Service Unit of Bioreactor Coupled with an Ultrafilter, National School of Engineering, Sfax University, P.O. Box 1173, 3038 Sfax, Tunisia.

Published: February 2020

A strain of Bacillus subtilis AF 17 with high exopolysaccharide (EPS) production ability was isolated and identified based on morphological and physiological characteristics and phylogenetic analysis of 16S rDNA sequences. EPS was isolated from the strain fermentation broth by alcohol precipitation and gel-filtration chromatography. Its structural characteristics were investigated and elucidated by methylation analysis, gas chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. Based on the obtained data, the EPS was found to be a levan containing a backbone of 6-substituted β-fructoses, with a low grade of branching at position 1 (linear/branched ratio 20:1). Levan showed a molecular weight of about 20 MDa. The antioxidant activity of this biopolymer was studied and revealed that levan showed an interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity (IC = 1.42 mg/mL), reducing power, and also a strong total antioxidant activity. Overall, the results suggest that levan is a promising source of natural antioxidants and can be used as additive in food and pharmaceutical preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.108DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
antioxidant activity
8
levan
5
levan isolated
4
isolated bacillus
4
subtilis af17
4
af17 purification
4
purification structural
4
structural analysis
4
analysis antioxidant
4

Similar Publications

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China.

Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis.

View Article and Find Full Text PDF

Highlighting antibiotic-free aquaculture by using marine microbes as a sustainable method to suppress Vibrio and enhance the performance of brine shrimp (Artemia franciscana).

Arch Microbiol

January 2025

Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.

Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!