Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, we developed a partial differential equation (PDE) that relates the age-specific prevalence of a chronic disease with the age-specific incidence and mortality rates in the illness-death model (IDM). With a view to planning population-wide interventions, the question arises how prevalence can be calculated if the distribution of a risk-factor in the population shifts. To study the impact of such possible interventions, it is important to deal with the resulting changes of risk-factors that affect the rates in the IDM. The aim of this work is to show how the PDE can be used to study such effects on the age-specific prevalence of a chronic disease, to demonstrate its applicability and to compare the results to a discrete event simulation (DES), a frequently used simulation technique. This is done for the first time based on the PDE which only needs data on population-wide epidemiological indices and is related to the von Foerster equation. In a simulation study, we analyse the effect of a hypothetical intervention against type 2 diabetes. We compare the age-specific prevalence obtained from a DES with the results predicted from modifying the rates in the PDE. The DES is based on 10000 subjects and estimates the effect of changes in the distributions of risk-factors. With respect to the PDE, the change of the distribution of risk factors is synthesized to an effective rate that can be used directly in the PDE. Both methods, DES and effective rate method (ERM) are capable of predicting the impact of the hypothetical intervention. The age-specific prevalences resulting from the DES and the ERM are consistent. Although DES is common in simulating effects of hypothetical interventions, the ERM is a suitable alternative. ERM fits well into the analytical theory of the IDM and the related PDE and comes with less computational effort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917280 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226554 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!