Adipose tissue is the main energy storage tissue in the body. Its catabolic and anabolic responses depend on several factors, such as nutritional status, metabolic profile, and hormonal signaling. There are few studies addressing the effects of laser photobiomodulation (PBM) on adipose tissue and results are controversial. Our purpose was to investigate the metabolic effects of PBM on adipose tissue from Wistar rats supplemented or not with caffeine. Wistar rats were divided into four groups: control (CTL), laser-treated [CTL (L)], caffeine (CAF), and caffeine+PBM [CAF (L)]. Blood was extracted for quantification of triglyceride and cholesterol levels and white adipose tissues were collected for analysis. We evaluated gene expression in the adipose tissue for the leptin receptor, lipase-sensitive hormone, tumor necrosis factor alpha, and beta adrenergic receptor. We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL. Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12;  = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881;  = 0.003). Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1089/photob.2018.4609DOI Listing

Publication Analysis

Top Keywords

adipose tissue
36
low-level laser
12
wistar rats
12
tissue
11
adipose
10
laser irradiation
8
white adipose
8
tissue wistar
8
pbm adipose
8
gene expression
8

Similar Publications

Short-Term Assessment of High-Sensitivity C-Reactive Protein (hs-CRP) Changes Following One Anastomosis Gastric Bypass (OAGB) in Patients with Obesity: A Prospective Cohort Study.

Obes Surg

January 2025

Department of Surgery, Minimally Invasive Surgery Research Center, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Rasool‑E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.

Background: Obesity, characterized by excessive adipose tissue, is associated with chronic low-grade inflammation and elevated inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP). This inflammation is linked to obesity-associated medical problems, including cardiovascular diseases. One anastomosis gastric bypass (OAGB) has emerged as an effective metabolic and bariatric surgical procedure to address severe obesity and its associated inflammatory state.

View Article and Find Full Text PDF

Background: For many colorectal cancer patients, primary surgery is the standard care of treatment. Further insights in perioperative care are crucial. The aim of this study is to assess the prognostic value of body composition for postoperative complications after laparoscopic and open colorectal surgery.

View Article and Find Full Text PDF

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!