A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic Manipulation of Cell Membrane Curvature by Light-Driven Reshaping of Azopolymer. | LitMetric

Local curvatures on the cell membrane serve as signaling hubs that promote curvature-dependent protein interactions and modulate a variety of cellular processes including endocytosis, exocytosis, and the actin cytoskeleton. However, precisely controlling the location and the degree of membrane curvature in live cells has not been possible until recently, where studies show that nanofabricated vertical structures on a substrate can imprint their shapes on the cell membrane to induce well-defined curvatures in adherent cells. Nevertheless, the intrinsic static nature of these engineered nanostructures prevents dynamic modulation of membrane curvatures. In this work, we engineer light-responsive polymer structures whose shape can be dynamically modulated by light and thus change the induced-membrane curvatures on-demand. Specifically, we fabricate three-dimensional azobenzene-based polymer structures that change from a vertical pillar to an elongated vertical bar shape upon green light illumination. We observe that U2OS cells cultured on azopolymer nanostructures rapidly respond to the topographical change of the substrate underneath. The dynamically induced high membrane curvatures at bar ends promote local accumulation of actin fibers and actin nucleator Arp2/3 complex. The ability to dynamically manipulate the membrane curvature and analyze protein response in real-time provides a new way to study curvature-dependent processes in live cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207080PMC
http://dx.doi.org/10.1021/acs.nanolett.9b04307DOI Listing

Publication Analysis

Top Keywords

cell membrane
12
membrane curvature
12
live cells
8
membrane curvatures
8
polymer structures
8
membrane
7
curvatures
5
dynamic manipulation
4
manipulation cell
4
curvature light-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!