Well-defined optically pure transition metal (TM) complexes bearing - and -symmetric N-heterocyclic carbene (NHC) ligands were prepared from prochiral NHC precursors. As predicted by DFT calculations, our strategy capitalizes on the formation of a metal-carbene bond which induces an axis of chirality. Configurationally stable atropisomers of various NHC-containing TM complexes were isolated by preparative HPLC on a chiral stationary phase in good yields and excellent optical purities (up to 99.5% ee). The carbene transfer from an optically pure Cu complex to a gold or palladium center reveals, for the first time, a full stereoretentivity, supporting the hypothesis of an associative mechanism for the transmetalation. The potential of these new chiral TM complexes was illustrated in asymmetric catalysis with up to 98% ee.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b12698 | DOI Listing |
J Am Chem Soc
January 2025
National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National University of Singapore, Department of Physics, Singapore 117551.
We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.
View Article and Find Full Text PDFOpt Express
January 2025
Phase distributions typically contain richer information about the morphology, structure, and organizational properties of a sample than intensity distributions. However, due to the weak scattering and absorption properties of pure phase objects, intensity measurements are unable to provide information about the phase, making it more challenging to reveal phase structure from the incident light background. Here, we propose a method for visualizing phase objects through simple optical reflection occurring at a glass interface.
View Article and Find Full Text PDFWhispering-gallery-mode (WGM) microresonators are typically studied for surface (bio)chemical sensing, mainly relying on small refractive index changes occurring within a nanometer range from their walls surface. This high sensitivity, reaching up to 10 refractive index unit (RIU, ∼2.5 nm/RIU and measured at a femtometer resolution) leads to broad ranges of applications, especially for biosensing purposes through the monitoring of molecular binding events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!