Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Knowledge on the initial and intermediate pyrolysis products of biomass is essential for the mechanistic investigation of biomass pyrolysis and further optimization of upgrading processes. The conventional method can only detect the final products, which do not resemble the initial or intermediate pyrolysis products. Here, we introduce a direct orifice sampling combined with atmospheric pressure photoionization mass spectrometry (APPI-MS) for in situ online analysis of the evolved volatile initial products from the pyrolysis of biomass. Pyrolysis experiments of both dimeric model compound (guaiacylglycerol-β-guaiacyl ether, GGGE) and poplar wood were carried out to validate the generality of the method. Generally, secondary reactions can be reduced by shortening the distance between the sample and sampling orifice. Large molecular-weight initial products up to trimers were detected during the pyrolysis of poplar wood, and no initial products larger than trimers were detected. It is inferred that in situ APPI immediately after sample extraction ensures efficient and effective product detection. Furthermore, the present work offers a promising feasible method for online tracing of reaction intermediates not only in pyrolysis but also in various reactive processes (e.g., catalytic reaction, oxidation) under operando conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b05200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!