Purpose: We previously determined that cancer-stromal interaction was a direct route to tumor cell heterogeneity progression, since cancer-stromal cell fusion in coculture resulted in the creation of heterogeneous clones of fusion hybrid progeny. In this report, we modified the cancer-stromal coculture system to establish optimal experimental conditions for investigating cell fusion machinery and the mechanism of heterogeneity progression.
Experimental Design: Red fluorescence protein-tagged LNCaP cells were cocultured with green fluorescence protein-labeled prostate stromal cells for cancer-stromal cell fusion, which was tracked as dual fluorescent cells by fluorescence microscopy.
Results: We identified the most efficient strategy to isolate clones of fusion hybrid progenies. From the coculture, mixed cells including fusion hybrids were subjected to low-density replating for colony formation by fusion hybrid progeny. These colonies could propagate into derivative cell populations. Compared to the parental LNCaP cells, clones of the fusion hybrid progeny displayed divergent behaviors and exhibited permanent genomic hybridization.
Conclusions: Cancer-stromal cell fusion leads to cancer cell heterogeneity. The cancer-stromal coculture system characterized in this study can be used as a model for molecular characterization of cancer cell fusion as the mechanism behind the progression of heterogeneity observed in clinical prostate cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949378 | PMC |
http://dx.doi.org/10.1002/pros.23941 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFJ Immunother Precis Oncol
February 2025
Sarah Cannon Research Institute (SCRI) at HealthONE, Denver, CO, USA.
The cadherin superfamily of proteins is critical for cell-cell interactions and demonstrates tissue-specific expression profiles. In cancers, disruption of cell-cell adhesion is frequently associated with oncogenesis and metastasis. As such, these proteins have been the targets of multiple attempts to develop novel therapeutics in malignancy.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopedic Surgery, MetroHealth Medical Center, Cleveland, USA.
Introduction In idiopathic scoliosis surgery, studies have shown two attending surgeons have better curve correction, pain, and recovery time. There is conflicting evidence on operative time, blood loss, infection rate, and hospital length of stay. Limited literature examines the impact of surgeon experience on the dual approach.
View Article and Find Full Text PDFJ R Stat Soc Ser A Stat Soc
January 2025
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Studies intended to estimate the effect of a treatment, like randomized trials, may not be sampled from the desired target population. To correct for this discrepancy, estimates can be transported to the target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!