Objective: The aim of this study was to develop a novel formulation of oleanolic acid (OA) solid dispersion (SD), using leucine (Leu) as the carrier to improve OA oral bioavailability.
Methods: The OA-Leu SD was prepared by solvent evaporation and was evaluated in vitro using differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, flowability, hygroscopicity and dissolution test. The stability of the SD was evaluated using accelerated testing. In vivo pharmacokinetic tests were performed in male Sprague Dawley rats using a liquid chromatography tandem-mass spectrometry bioanalytical method.
Key Findings: OA-Leu SD was successfully prepared, and OA was mostly in an amorphous state. More than 80% of OA could dissolve in OA-Leu SD in 20 min, while only 13.4% of free OA dissolved. The powder flow of OA-Leu SD was clearly improved compared with free OA and its moisture absorption was 3.4%. The accelerated testing further demonstrated that SD could maintain OA in an amorphous state at 40 °C for 6 months. OA-Leu SD showed higher relative oral bioavailability (189.7%) than free OA in rats.
Conclusions: Using Leu as a carrier produced a SD with good flowability, low hygroscopicity and high bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jphp.13200 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Pharmaceutics
December 2024
AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany.
Atomization plays a key role in spray drying, a process widely used in the pharmaceutical, chemical, biological, and food and beverage industries. In the pharmaceutical industry, spray drying is particularly important in the preparation of amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients when mixed with a polymer. In this study, a 3D-printed adaptation of a commercial spray dryer nozzle (PHARMA-SD PSD-1, GEA Group AG) was used to investigate the atomization of PVP-VA 64 polymer solutions under varying flow conditions using high-speed diffuse back-illumination.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
Active pharmaceutical ingredient (API) content is a critical quality attribute (CQA) of amorphous solid dispersions (ASDs) prepared by spraying a solution of APIs and polymers onto the excipients in fluid bed granulator. This study presents four methods for quantifying API content during ASD preparation. Raman and three near-infrared (NIR) process analysers were utilized to develop methods for API quantification.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!